Sohil Mehta 7baadd463e x86/cpufeatures: Enumerate the LASS feature bits
Linear Address Space Separation (LASS) is a security feature that
mitigates a class of side-channel attacks relying on speculative access
across the user/kernel boundary.

Privilege mode based access protection already exists today with paging
and features such as SMEP and SMAP. However, to enforce these
protections, the processor must traverse the paging structures in
memory. An attacker can use timing information resulting from this
traversal to determine details about the paging structures, and to
determine the layout of the kernel memory.

LASS provides the same mode-based protections as paging but without
traversing the paging structures. Because the protections are enforced
prior to page-walks, an attacker will not be able to derive paging-based
timing information from the various caching structures such as the TLBs,
mid-level caches, page walker, data caches, etc.

LASS enforcement relies on the kernel implementation to divide the
64-bit virtual address space into two halves:
  Addr[63]=0 -> User address space
  Addr[63]=1 -> Kernel address space

Any data access or code execution across address spaces typically
results in a #GP fault, with an #SS generated in some rare cases. The
LASS enforcement for kernel data accesses is dependent on CR4.SMAP being
set. The enforcement can be disabled by toggling the RFLAGS.AC bit
similar to SMAP.

Define the CPU feature bits to enumerate LASS. Also, disable the feature
at compile time on 32-bit kernels. Use a direct dependency on X86_32
(instead of !X86_64) to make it easier to combine with similar 32-bit
specific dependencies in the future.

LASS mitigates a class of side-channel speculative attacks, such as
Spectre LAM, described in the paper, "Leaky Address Masking: Exploiting
Unmasked Spectre Gadgets with Noncanonical Address Translation".

Add the "lass" flag to /proc/cpuinfo to indicate that the feature is
supported by hardware and enabled by the kernel. This allows userspace
to determine if the system is secure against such attacks.

Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Xin Li (Intel) <xin@zytor.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://patch.msgid.link/20251118182911.2983253-2-sohil.mehta%40intel.com
2025-11-18 10:38:26 -08:00
2022-09-28 09:02:20 +02:00
2025-02-19 14:53:27 -07:00
2025-10-12 13:42:36 -07:00
2024-03-18 03:36:32 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the reStructuredText markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
Linux kernel source tree
Readme 8.3 GiB
Languages
C 97.1%
Assembly 1%
Shell 0.6%
Rust 0.4%
Python 0.4%
Other 0.3%