mirror of
https://github.com/torvalds/linux.git
synced 2025-12-07 20:06:24 +00:00
05b44aef709cae5e4274590f050cf35049dcc24e
Implement the actual logic for handling RSEQ updates in a fast path after
handling the TIF work and at the point where the task is actually returning
to user space.
This is the right point to do that because at this point the CPU and the MM
CID are stable and cannot longer change due to yet another reschedule.
That happens when the task is handling it via TIF_NOTIFY_RESUME in
resume_user_mode_work(), which is invoked from the exit to user mode work
loop.
The function is invoked after the TIF work is handled and runs with
interrupts disabled, which means it cannot resolve page faults. It
therefore disables page faults and in case the access to the user space
memory faults, it:
- notes the fail in the event struct
- raises TIF_NOTIFY_RESUME
- returns false to the caller
The caller has to go back to the TIF work, which runs with interrupts
enabled and therefore can resolve the page faults. This happens mostly on
fork() when the memory is marked COW.
If the user memory inspection finds invalid data, the function returns
false as well and sets the fatal flag in the event struct along with
TIF_NOTIFY_RESUME. The slow path notify handler has to evaluate that flag
and terminate the task with SIGSEGV as documented.
The initial decision to invoke any of this is based on one flags in the
event struct: @sched_switch. The decision is in pseudo ASM:
load tsk::event::sched_switch
jnz inspect_user_space
mov $0, tsk::event::events
...
leave
So for the common case where the task was not scheduled out, this really
boils down to three instructions before going out if the compiler is not
completely stupid (and yes, some of them are).
If the condition is true, then it checks, whether CPU ID or MM CID have
changed. If so, then the CPU/MM IDs have to be updated and are thereby
cached for the next round. The update unconditionally retrieves the user
space critical section address to spare another user*begin/end() pair. If
that's not zero and tsk::event::user_irq is set, then the critical section
is analyzed and acted upon. If either zero or the entry came via syscall
the critical section analysis is skipped.
If the comparison is false then the critical section has to be analyzed
because the event flag is then only true when entry from user was by
interrupt.
This is provided without the actual hookup to let reviewers focus on the
implementation details. The hookup happens in the next step.
Note: As with quite some other optimizations this depends on the generic
entry infrastructure and is not enabled to be sucked into random
architecture implementations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://patch.msgid.link/20251027084307.638929615@linutronix.de
Merge tag 'asoc-fix-v6.18-rc2' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound into for-linus
Linux kernel
============
There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.
In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``. The formatted documentation can also be read online at:
https://www.kernel.org/doc/html/latest/
There are various text files in the Documentation/ subdirectory,
several of them using the reStructuredText markup notation.
Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
Languages
C
97.1%
Assembly
1%
Shell
0.6%
Rust
0.4%
Python
0.4%
Other
0.3%