KVM: arm64: GICv3: nv: Resync LRs/VMCR/HCR early for better MI emulation

The current approach to nested GICv3 support is to not do anything
while L2 is running, wait a transition from L2 to L1 to resync
LRs, VMCR and HCR, and only then evaluate the state to decide
whether to generate a maintenance interrupt.

This doesn't provide a good quality of emulation, and it would be
far preferable to find out early that we need to perform a switch.

Move the LRs/VMCR and HCR resync into vgic_v3_sync_nested(), so
that we have most of the state available. As we turning the vgic
off at this stage to avoid a screaming host MI, add a new helper
vgic_v3_flush_nested() that switches the vgic on again. The MI can
then be directly injected as required.

Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Link: https://msgid.link/20251120172540.2267180-35-maz@kernel.org
Signed-off-by: Oliver Upton <oupton@kernel.org>
This commit is contained in:
Marc Zyngier
2025-11-20 17:25:24 +00:00
committed by Oliver Upton
parent 84792050e0
commit eb33ffa2bd
5 changed files with 46 additions and 33 deletions

View File

@@ -77,6 +77,7 @@ DECLARE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
int __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu);
u64 __gic_v3_get_lr(unsigned int lr);
void __gic_v3_set_lr(u64 val, int lr);
void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if);

View File

@@ -60,7 +60,7 @@ u64 __gic_v3_get_lr(unsigned int lr)
unreachable();
}
static void __gic_v3_set_lr(u64 val, int lr)
void __gic_v3_set_lr(u64 val, int lr)
{
switch (lr & 0xf) {
case 0:

View File

@@ -70,13 +70,14 @@ static int lr_map_idx_to_shadow_idx(struct shadow_if *shadow_if, int idx)
* - on L2 put: perform the inverse transformation, so that the result of L2
* running becomes visible to L1 in the VNCR-accessible registers.
*
* - there is nothing to do on L2 entry, as everything will have happened
* on load. However, this is the point where we detect that an interrupt
* targeting L1 and prepare the grand switcheroo.
* - there is nothing to do on L2 entry apart from enabling the vgic, as
* everything will have happened on load. However, this is the point where
* we detect that an interrupt targeting L1 and prepare the grand
* switcheroo.
*
* - on L2 exit: emulate the HW bit, and deactivate corresponding the L1
* interrupt. The L0 active state will be cleared by the HW if the L1
* interrupt was itself backed by a HW interrupt.
* - on L2 exit: resync the LRs and VMCR, emulate the HW bit, and deactivate
* corresponding the L1 interrupt. The L0 active state will be cleared by
* the HW if the L1 interrupt was itself backed by a HW interrupt.
*
* Maintenance Interrupt (MI) management:
*
@@ -265,15 +266,30 @@ static void vgic_v3_create_shadow_lr(struct kvm_vcpu *vcpu,
s_cpu_if->used_lrs = hweight16(shadow_if->lr_map);
}
void vgic_v3_flush_nested(struct kvm_vcpu *vcpu)
{
u64 val = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
write_sysreg_s(val | vgic_ich_hcr_trap_bits(), SYS_ICH_HCR_EL2);
}
void vgic_v3_sync_nested(struct kvm_vcpu *vcpu)
{
struct shadow_if *shadow_if = get_shadow_if();
int i;
for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) {
u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
u64 val, host_lr, lr;
struct vgic_irq *irq;
host_lr = __gic_v3_get_lr(lr_map_idx_to_shadow_idx(shadow_if, i));
/* Propagate the new LR state */
lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
val = lr & ~ICH_LR_STATE;
val |= host_lr & ICH_LR_STATE;
__vcpu_assign_sys_reg(vcpu, ICH_LRN(i), val);
if (!(lr & ICH_LR_HW) || !(lr & ICH_LR_STATE))
continue;
@@ -286,12 +302,21 @@ void vgic_v3_sync_nested(struct kvm_vcpu *vcpu)
if (WARN_ON(!irq)) /* Shouldn't happen as we check on load */
continue;
lr = __gic_v3_get_lr(lr_map_idx_to_shadow_idx(shadow_if, i));
if (!(lr & ICH_LR_STATE))
if (!(host_lr & ICH_LR_STATE))
irq->active = false;
vgic_put_irq(vcpu->kvm, irq);
}
/* We need these to be synchronised to generate the MI */
__vcpu_assign_sys_reg(vcpu, ICH_VMCR_EL2, read_sysreg_s(SYS_ICH_VMCR_EL2));
__vcpu_rmw_sys_reg(vcpu, ICH_HCR_EL2, &=, ~ICH_HCR_EL2_EOIcount);
__vcpu_rmw_sys_reg(vcpu, ICH_HCR_EL2, |=, read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EL2_EOIcount);
write_sysreg_s(0, SYS_ICH_HCR_EL2);
isb();
vgic_v3_nested_update_mi(vcpu);
}
static void vgic_v3_create_shadow_state(struct kvm_vcpu *vcpu,
@@ -324,7 +349,8 @@ void vgic_v3_load_nested(struct kvm_vcpu *vcpu)
__vgic_v3_restore_vmcr_aprs(cpu_if);
__vgic_v3_activate_traps(cpu_if);
__vgic_v3_restore_state(cpu_if);
for (int i = 0; i < cpu_if->used_lrs; i++)
__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
/*
* Propagate the number of used LRs for the benefit of the HYP
@@ -337,36 +363,19 @@ void vgic_v3_put_nested(struct kvm_vcpu *vcpu)
{
struct shadow_if *shadow_if = get_shadow_if();
struct vgic_v3_cpu_if *s_cpu_if = &shadow_if->cpuif;
u64 val;
int i;
__vgic_v3_save_aprs(s_cpu_if);
__vgic_v3_deactivate_traps(s_cpu_if);
__vgic_v3_save_state(s_cpu_if);
/*
* Translate the shadow state HW fields back to the virtual ones
* before copying the shadow struct back to the nested one.
*/
val = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
val &= ~ICH_HCR_EL2_EOIcount_MASK;
val |= (s_cpu_if->vgic_hcr & ICH_HCR_EL2_EOIcount_MASK);
__vcpu_assign_sys_reg(vcpu, ICH_HCR_EL2, val);
__vcpu_assign_sys_reg(vcpu, ICH_VMCR_EL2, s_cpu_if->vgic_vmcr);
for (i = 0; i < 4; i++) {
__vcpu_assign_sys_reg(vcpu, ICH_AP0RN(i), s_cpu_if->vgic_ap0r[i]);
__vcpu_assign_sys_reg(vcpu, ICH_AP1RN(i), s_cpu_if->vgic_ap1r[i]);
}
for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) {
val = __vcpu_sys_reg(vcpu, ICH_LRN(i));
for (i = 0; i < s_cpu_if->used_lrs; i++)
__gic_v3_set_lr(0, i);
val &= ~ICH_LR_STATE;
val |= s_cpu_if->vgic_lr[lr_map_idx_to_shadow_idx(shadow_if, i)] & ICH_LR_STATE;
__vcpu_assign_sys_reg(vcpu, ICH_LRN(i), val);
}
__vgic_v3_deactivate_traps(s_cpu_if);
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = 0;
}

View File

@@ -1049,8 +1049,9 @@ void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
* abort the entry procedure and inject the exception at the
* beginning of the run loop.
*
* - Otherwise, do exactly *NOTHING*. The guest state is
* already loaded, and we can carry on with running it.
* - Otherwise, do exactly *NOTHING* apart from enabling the virtual
* CPU interface. The guest state is already loaded, and we can
* carry on with running it.
*
* If we have NV, but are not in a nested state, compute the
* maintenance interrupt state, as it may fire.
@@ -1059,6 +1060,7 @@ void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
if (kvm_vgic_vcpu_pending_irq(vcpu))
kvm_make_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu);
vgic_v3_flush_nested(vcpu);
return;
}

View File

@@ -445,6 +445,7 @@ static inline bool kvm_has_gicv3(struct kvm *kvm)
return kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP);
}
void vgic_v3_flush_nested(struct kvm_vcpu *vcpu);
void vgic_v3_sync_nested(struct kvm_vcpu *vcpu);
void vgic_v3_load_nested(struct kvm_vcpu *vcpu);
void vgic_v3_put_nested(struct kvm_vcpu *vcpu);