crypto: x86/aes-gcm - clean up AVX512 code to assume 512-bit vectors

aes-gcm-vaes-avx512.S (originally aes-gcm-avx10-x86_64.S) was designed
to support multiple maximum vector lengths, while still utilizing AVX512
/ AVX10 features such as the increased number of vector registers.
However, the support for multiple maximum vector lengths turned out to
not be useful.  Support for maximum vector lengths other than 512 bits
was removed from the AVX10 specification, which leaves "avoiding
overly-eager downclocking" as the only remaining use case for limiting
AVX512 / AVX10 code to 256-bit vectors.  But this issue has gone away in
new CPUs, and the separate VAES+AVX2 code which I ended up having to
write anyway provides nearly as good 256-bit support.

Therefore, clean up this code to not be written in terms of a generic
vector length, but rather just assume 512-bit vectors.

Acked-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251002023117.37504-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
This commit is contained in:
Eric Biggers
2025-10-01 19:31:13 -07:00
parent 12beec21c5
commit 4b582e0fb3

View File

@@ -70,16 +70,14 @@
.Lgfpoly_and_internal_carrybit:
.octa 0xc2000000000000010000000000000001
// The below constants are used for incrementing the counter blocks.
// ctr_pattern points to the four 128-bit values [0, 1, 2, 3].
// inc_2blocks and inc_4blocks point to the single 128-bit values 2 and
// 4. Note that the same '2' is reused in ctr_pattern and inc_2blocks.
// Values needed to prepare the initial vector of counter blocks.
.Lctr_pattern:
.octa 0
.octa 1
.Linc_2blocks:
.octa 2
.octa 3
// The number of AES blocks per vector, as a 128-bit value.
.Linc_4blocks:
.octa 4
@@ -96,29 +94,13 @@
// Offset to end of hash key powers array in the key struct.
//
// This is immediately followed by three zeroized padding blocks, which are
// included so that partial vectors can be handled more easily. E.g. if VL=64
// and two blocks remain, we load the 4 values [H^2, H^1, 0, 0]. The most
// padding blocks needed is 3, which occurs if [H^1, 0, 0, 0] is loaded.
// included so that partial vectors can be handled more easily. E.g. if two
// blocks remain, we load the 4 values [H^2, H^1, 0, 0]. The most padding
// blocks needed is 3, which occurs if [H^1, 0, 0, 0] is loaded.
#define OFFSETOFEND_H_POWERS (OFFSETOF_H_POWERS + (NUM_H_POWERS * 16))
.text
// Set the vector length in bytes. This sets the VL variable and defines
// register aliases V0-V31 that map to the ymm or zmm registers.
.macro _set_veclen vl
.set VL, \vl
.irp i, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
.if VL == 32
.set V\i, %ymm\i
.elseif VL == 64
.set V\i, %zmm\i
.else
.error "Unsupported vector length"
.endif
.endr
.endm
// The _ghash_mul_step macro does one step of GHASH multiplication of the
// 128-bit lanes of \a by the corresponding 128-bit lanes of \b and storing the
// reduced products in \dst. \t0, \t1, and \t2 are temporary registers of the
@@ -286,31 +268,27 @@
// The number of key powers initialized is NUM_H_POWERS, and they are stored in
// the order H^NUM_H_POWERS to H^1. The zeroized padding blocks after the key
// powers themselves are also initialized.
//
// This macro supports both VL=32 and VL=64. _set_veclen must have been invoked
// with the desired length. In the VL=32 case, the function computes twice as
// many key powers than are actually used by the VL=32 GCM update functions.
// This is done to keep the key format the same regardless of vector length.
.macro _aes_gcm_precompute
// Function arguments
.set KEY, %rdi
// Additional local variables. V0-V2 and %rax are used as temporaries.
// Additional local variables.
// %zmm[0-2] and %rax are used as temporaries.
.set POWERS_PTR, %rsi
.set RNDKEYLAST_PTR, %rdx
.set H_CUR, V3
.set H_CUR, %zmm3
.set H_CUR_YMM, %ymm3
.set H_CUR_XMM, %xmm3
.set H_INC, V4
.set H_INC, %zmm4
.set H_INC_YMM, %ymm4
.set H_INC_XMM, %xmm4
.set GFPOLY, V5
.set GFPOLY, %zmm5
.set GFPOLY_YMM, %ymm5
.set GFPOLY_XMM, %xmm5
// Get pointer to lowest set of key powers (located at end of array).
lea OFFSETOFEND_H_POWERS-VL(KEY), POWERS_PTR
lea OFFSETOFEND_H_POWERS-64(KEY), POWERS_PTR
// Encrypt an all-zeroes block to get the raw hash subkey.
movl OFFSETOF_AESKEYLEN(KEY), %eax
@@ -329,8 +307,8 @@
// Zeroize the padding blocks.
vpxor %xmm0, %xmm0, %xmm0
vmovdqu %ymm0, VL(POWERS_PTR)
vmovdqu %xmm0, VL+2*16(POWERS_PTR)
vmovdqu %ymm0, 64(POWERS_PTR)
vmovdqu %xmm0, 64+2*16(POWERS_PTR)
// Finish preprocessing the first key power, H^1. Since this GHASH
// implementation operates directly on values with the backwards bit
@@ -370,25 +348,22 @@
vinserti128 $1, H_CUR_XMM, H_INC_YMM, H_CUR_YMM
vinserti128 $1, H_INC_XMM, H_INC_YMM, H_INC_YMM
.if VL == 64
// Create H_CUR = [H^4, H^3, H^2, H^1] and H_INC = [H^4, H^4, H^4, H^4].
_ghash_mul H_INC_YMM, H_CUR_YMM, H_INC_YMM, GFPOLY_YMM, \
%ymm0, %ymm1, %ymm2
vinserti64x4 $1, H_CUR_YMM, H_INC, H_CUR
vshufi64x2 $0, H_INC, H_INC, H_INC
.endif
// Store the lowest set of key powers.
vmovdqu8 H_CUR, (POWERS_PTR)
// Compute and store the remaining key powers. With VL=32, repeatedly
// multiply [H^(i+1), H^i] by [H^2, H^2] to get [H^(i+3), H^(i+2)].
// With VL=64, repeatedly multiply [H^(i+3), H^(i+2), H^(i+1), H^i] by
// Compute and store the remaining key powers.
// Repeatedly multiply [H^(i+3), H^(i+2), H^(i+1), H^i] by
// [H^4, H^4, H^4, H^4] to get [H^(i+7), H^(i+6), H^(i+5), H^(i+4)].
mov $(NUM_H_POWERS*16/VL) - 1, %eax
mov $3, %eax
.Lprecompute_next\@:
sub $VL, POWERS_PTR
_ghash_mul H_INC, H_CUR, H_CUR, GFPOLY, V0, V1, V2
sub $64, POWERS_PTR
_ghash_mul H_INC, H_CUR, H_CUR, GFPOLY, %zmm0, %zmm1, %zmm2
vmovdqu8 H_CUR, (POWERS_PTR)
dec %eax
jnz .Lprecompute_next\@
@@ -401,16 +376,10 @@
// the result in \dst_xmm. This implicitly zeroizes the other lanes of dst.
.macro _horizontal_xor src, src_xmm, dst_xmm, t0_xmm, t1_xmm, t2_xmm
vextracti32x4 $1, \src, \t0_xmm
.if VL == 32
vpxord \t0_xmm, \src_xmm, \dst_xmm
.elseif VL == 64
vextracti32x4 $2, \src, \t1_xmm
vextracti32x4 $3, \src, \t2_xmm
vpxord \t0_xmm, \src_xmm, \dst_xmm
vpternlogd $0x96, \t1_xmm, \t2_xmm, \dst_xmm
.else
.error "Unsupported vector length"
.endif
.endm
// Do one step of the GHASH update of the data blocks given in the vector
@@ -424,25 +393,21 @@
//
// The GHASH update does: GHASH_ACC = H_POW4*(GHASHDATA0 + GHASH_ACC) +
// H_POW3*GHASHDATA1 + H_POW2*GHASHDATA2 + H_POW1*GHASHDATA3, where the
// operations are vectorized operations on vectors of 16-byte blocks. E.g.,
// with VL=32 there are 2 blocks per vector and the vectorized terms correspond
// to the following non-vectorized terms:
// operations are vectorized operations on 512-bit vectors of 128-bit blocks.
// The vectorized terms correspond to the following non-vectorized terms:
//
// H_POW4*(GHASHDATA0 + GHASH_ACC) => H^8*(blk0 + GHASH_ACC_XMM) and H^7*(blk1 + 0)
// H_POW3*GHASHDATA1 => H^6*blk2 and H^5*blk3
// H_POW2*GHASHDATA2 => H^4*blk4 and H^3*blk5
// H_POW1*GHASHDATA3 => H^2*blk6 and H^1*blk7
//
// With VL=64, we use 4 blocks/vector, H^16 through H^1, and blk0 through blk15.
// H_POW4*(GHASHDATA0 + GHASH_ACC) => H^16*(blk0 + GHASH_ACC_XMM),
// H^15*(blk1 + 0), H^14*(blk2 + 0), and H^13*(blk3 + 0)
// H_POW3*GHASHDATA1 => H^12*blk4, H^11*blk5, H^10*blk6, and H^9*blk7
// H_POW2*GHASHDATA2 => H^8*blk8, H^7*blk9, H^6*blk10, and H^5*blk11
// H_POW1*GHASHDATA3 => H^4*blk12, H^3*blk13, H^2*blk14, and H^1*blk15
//
// More concretely, this code does:
// - Do vectorized "schoolbook" multiplications to compute the intermediate
// 256-bit product of each block and its corresponding hash key power.
// There are 4*VL/16 of these intermediate products.
// - Sum (XOR) the intermediate 256-bit products across vectors. This leaves
// VL/16 256-bit intermediate values.
// - Sum (XOR) the intermediate 256-bit products across vectors.
// - Do a vectorized reduction of these 256-bit intermediate values to
// 128-bits each. This leaves VL/16 128-bit intermediate values.
// 128-bits each.
// - Sum (XOR) these values and store the 128-bit result in GHASH_ACC_XMM.
//
// See _ghash_mul_step for the full explanation of the operations performed for
@@ -498,60 +463,60 @@
.endif
.endm
// Do one non-last round of AES encryption on the counter blocks in V0-V3 using
// the round key that has been broadcast to all 128-bit lanes of \round_key.
// Do one non-last round of AES encryption on the blocks in %zmm[0-3] using the
// round key that has been broadcast to all 128-bit lanes of \round_key.
.macro _vaesenc_4x round_key
vaesenc \round_key, V0, V0
vaesenc \round_key, V1, V1
vaesenc \round_key, V2, V2
vaesenc \round_key, V3, V3
vaesenc \round_key, %zmm0, %zmm0
vaesenc \round_key, %zmm1, %zmm1
vaesenc \round_key, %zmm2, %zmm2
vaesenc \round_key, %zmm3, %zmm3
.endm
// Start the AES encryption of four vectors of counter blocks.
.macro _ctr_begin_4x
// Increment LE_CTR four times to generate four vectors of little-endian
// counter blocks, swap each to big-endian, and store them in V0-V3.
vpshufb BSWAP_MASK, LE_CTR, V0
// counter blocks, swap each to big-endian, and store them in %zmm[0-3].
vpshufb BSWAP_MASK, LE_CTR, %zmm0
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, V1
vpshufb BSWAP_MASK, LE_CTR, %zmm1
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, V2
vpshufb BSWAP_MASK, LE_CTR, %zmm2
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, V3
vpshufb BSWAP_MASK, LE_CTR, %zmm3
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
// AES "round zero": XOR in the zero-th round key.
vpxord RNDKEY0, V0, V0
vpxord RNDKEY0, V1, V1
vpxord RNDKEY0, V2, V2
vpxord RNDKEY0, V3, V3
vpxord RNDKEY0, %zmm0, %zmm0
vpxord RNDKEY0, %zmm1, %zmm1
vpxord RNDKEY0, %zmm2, %zmm2
vpxord RNDKEY0, %zmm3, %zmm3
.endm
// Do the last AES round for four vectors of counter blocks V0-V3, XOR source
// data with the resulting keystream, and write the result to DST and
// Do the last AES round for four vectors of counter blocks %zmm[0-3], XOR
// source data with the resulting keystream, and write the result to DST and
// GHASHDATA[0-3]. (Implementation differs slightly, but has the same effect.)
.macro _aesenclast_and_xor_4x
// XOR the source data with the last round key, saving the result in
// GHASHDATA[0-3]. This reduces latency by taking advantage of the
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a).
vpxord 0*VL(SRC), RNDKEYLAST, GHASHDATA0
vpxord 1*VL(SRC), RNDKEYLAST, GHASHDATA1
vpxord 2*VL(SRC), RNDKEYLAST, GHASHDATA2
vpxord 3*VL(SRC), RNDKEYLAST, GHASHDATA3
vpxord 0*64(SRC), RNDKEYLAST, GHASHDATA0
vpxord 1*64(SRC), RNDKEYLAST, GHASHDATA1
vpxord 2*64(SRC), RNDKEYLAST, GHASHDATA2
vpxord 3*64(SRC), RNDKEYLAST, GHASHDATA3
// Do the last AES round. This handles the XOR with the source data
// too, as per the optimization described above.
vaesenclast GHASHDATA0, V0, GHASHDATA0
vaesenclast GHASHDATA1, V1, GHASHDATA1
vaesenclast GHASHDATA2, V2, GHASHDATA2
vaesenclast GHASHDATA3, V3, GHASHDATA3
vaesenclast GHASHDATA0, %zmm0, GHASHDATA0
vaesenclast GHASHDATA1, %zmm1, GHASHDATA1
vaesenclast GHASHDATA2, %zmm2, GHASHDATA2
vaesenclast GHASHDATA3, %zmm3, GHASHDATA3
// Store the en/decrypted data to DST.
vmovdqu8 GHASHDATA0, 0*VL(DST)
vmovdqu8 GHASHDATA1, 1*VL(DST)
vmovdqu8 GHASHDATA2, 2*VL(DST)
vmovdqu8 GHASHDATA3, 3*VL(DST)
vmovdqu8 GHASHDATA0, 0*64(DST)
vmovdqu8 GHASHDATA1, 1*64(DST)
vmovdqu8 GHASHDATA2, 2*64(DST)
vmovdqu8 GHASHDATA3, 3*64(DST)
.endm
// void aes_gcm_{enc,dec}_update_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
@@ -559,13 +524,11 @@
// const u8 *src, u8 *dst, int datalen);
//
// This macro generates a GCM encryption or decryption update function with the
// above prototype (with \enc selecting which one). This macro supports both
// VL=32 and VL=64. _set_veclen must have been invoked with the desired length.
//
// This function computes the next portion of the CTR keystream, XOR's it with
// |datalen| bytes from |src|, and writes the resulting encrypted or decrypted
// data to |dst|. It also updates the GHASH accumulator |ghash_acc| using the
// next |datalen| ciphertext bytes.
// above prototype (with \enc selecting which one). The function computes the
// next portion of the CTR keystream, XOR's it with |datalen| bytes from |src|,
// and writes the resulting encrypted or decrypted data to |dst|. It also
// updates the GHASH accumulator |ghash_acc| using the next |datalen| ciphertext
// bytes.
//
// |datalen| must be a multiple of 16, except on the last call where it can be
// any length. The caller must do any buffering needed to ensure this. Both
@@ -600,69 +563,69 @@
// Pointer to the last AES round key for the chosen AES variant
.set RNDKEYLAST_PTR, %r11
// In the main loop, V0-V3 are used as AES input and output. Elsewhere
// they are used as temporary registers.
// In the main loop, %zmm[0-3] are used as AES input and output.
// Elsewhere they are used as temporary registers.
// GHASHDATA[0-3] hold the ciphertext blocks and GHASH input data.
.set GHASHDATA0, V4
.set GHASHDATA0, %zmm4
.set GHASHDATA0_XMM, %xmm4
.set GHASHDATA1, V5
.set GHASHDATA1, %zmm5
.set GHASHDATA1_XMM, %xmm5
.set GHASHDATA2, V6
.set GHASHDATA2, %zmm6
.set GHASHDATA2_XMM, %xmm6
.set GHASHDATA3, V7
.set GHASHDATA3, %zmm7
// BSWAP_MASK is the shuffle mask for byte-reflecting 128-bit values
// using vpshufb, copied to all 128-bit lanes.
.set BSWAP_MASK, V8
.set BSWAP_MASK, %zmm8
// RNDKEY temporarily holds the next AES round key.
.set RNDKEY, V9
.set RNDKEY, %zmm9
// GHASH_ACC is the accumulator variable for GHASH. When fully reduced,
// only the lowest 128-bit lane can be nonzero. When not fully reduced,
// more than one lane may be used, and they need to be XOR'd together.
.set GHASH_ACC, V10
.set GHASH_ACC, %zmm10
.set GHASH_ACC_XMM, %xmm10
// LE_CTR_INC is the vector of 32-bit words that need to be added to a
// vector of little-endian counter blocks to advance it forwards.
.set LE_CTR_INC, V11
.set LE_CTR_INC, %zmm11
// LE_CTR contains the next set of little-endian counter blocks.
.set LE_CTR, V12
.set LE_CTR, %zmm12
// RNDKEY0, RNDKEYLAST, and RNDKEY_M[9-1] contain cached AES round keys,
// copied to all 128-bit lanes. RNDKEY0 is the zero-th round key,
// RNDKEYLAST the last, and RNDKEY_M\i the one \i-th from the last.
.set RNDKEY0, V13
.set RNDKEYLAST, V14
.set RNDKEY_M9, V15
.set RNDKEY_M8, V16
.set RNDKEY_M7, V17
.set RNDKEY_M6, V18
.set RNDKEY_M5, V19
.set RNDKEY_M4, V20
.set RNDKEY_M3, V21
.set RNDKEY_M2, V22
.set RNDKEY_M1, V23
.set RNDKEY0, %zmm13
.set RNDKEYLAST, %zmm14
.set RNDKEY_M9, %zmm15
.set RNDKEY_M8, %zmm16
.set RNDKEY_M7, %zmm17
.set RNDKEY_M6, %zmm18
.set RNDKEY_M5, %zmm19
.set RNDKEY_M4, %zmm20
.set RNDKEY_M3, %zmm21
.set RNDKEY_M2, %zmm22
.set RNDKEY_M1, %zmm23
// GHASHTMP[0-2] are temporary variables used by _ghash_step_4x. These
// cannot coincide with anything used for AES encryption, since for
// performance reasons GHASH and AES encryption are interleaved.
.set GHASHTMP0, V24
.set GHASHTMP1, V25
.set GHASHTMP2, V26
.set GHASHTMP0, %zmm24
.set GHASHTMP1, %zmm25
.set GHASHTMP2, %zmm26
// H_POW[4-1] contain the powers of the hash key H^(4*VL/16)...H^1. The
// H_POW[4-1] contain the powers of the hash key H^16...H^1. The
// descending numbering reflects the order of the key powers.
.set H_POW4, V27
.set H_POW3, V28
.set H_POW2, V29
.set H_POW1, V30
.set H_POW4, %zmm27
.set H_POW3, %zmm28
.set H_POW2, %zmm29
.set H_POW1, %zmm30
// GFPOLY contains the .Lgfpoly constant, copied to all 128-bit lanes.
.set GFPOLY, V31
.set GFPOLY, %zmm31
// Load some constants.
vbroadcasti32x4 .Lbswap_mask(%rip), BSWAP_MASK
@@ -685,29 +648,23 @@
// Finish initializing LE_CTR by adding [0, 1, ...] to its low words.
vpaddd .Lctr_pattern(%rip), LE_CTR, LE_CTR
// Initialize LE_CTR_INC to contain VL/16 in all 128-bit lanes.
.if VL == 32
vbroadcasti32x4 .Linc_2blocks(%rip), LE_CTR_INC
.elseif VL == 64
// Load 4 into all 128-bit lanes of LE_CTR_INC.
vbroadcasti32x4 .Linc_4blocks(%rip), LE_CTR_INC
.else
.error "Unsupported vector length"
.endif
// If there are at least 4*VL bytes of data, then continue into the loop
// that processes 4*VL bytes of data at a time. Otherwise skip it.
// If there are at least 256 bytes of data, then continue into the loop
// that processes 256 bytes of data at a time. Otherwise skip it.
//
// Pre-subtracting 4*VL from DATALEN saves an instruction from the main
// Pre-subtracting 256 from DATALEN saves an instruction from the main
// loop and also ensures that at least one write always occurs to
// DATALEN, zero-extending it and allowing DATALEN64 to be used later.
add $-4*VL, DATALEN // shorter than 'sub 4*VL' when VL=32
sub $256, DATALEN
jl .Lcrypt_loop_4x_done\@
// Load powers of the hash key.
vmovdqu8 OFFSETOFEND_H_POWERS-4*VL(KEY), H_POW4
vmovdqu8 OFFSETOFEND_H_POWERS-3*VL(KEY), H_POW3
vmovdqu8 OFFSETOFEND_H_POWERS-2*VL(KEY), H_POW2
vmovdqu8 OFFSETOFEND_H_POWERS-1*VL(KEY), H_POW1
vmovdqu8 OFFSETOFEND_H_POWERS-4*64(KEY), H_POW4
vmovdqu8 OFFSETOFEND_H_POWERS-3*64(KEY), H_POW3
vmovdqu8 OFFSETOFEND_H_POWERS-2*64(KEY), H_POW2
vmovdqu8 OFFSETOFEND_H_POWERS-1*64(KEY), H_POW1
// Main loop: en/decrypt and hash 4 vectors at a time.
//
@@ -736,9 +693,9 @@
cmp %rax, RNDKEYLAST_PTR
jne 1b
_aesenclast_and_xor_4x
sub $-4*VL, SRC // shorter than 'add 4*VL' when VL=32
sub $-4*VL, DST
add $-4*VL, DATALEN
add $256, SRC
add $256, DST
sub $256, DATALEN
jl .Lghash_last_ciphertext_4x\@
.endif
@@ -752,10 +709,10 @@
// If decrypting, load more ciphertext blocks into GHASHDATA[0-3]. If
// encrypting, GHASHDATA[0-3] already contain the previous ciphertext.
.if !\enc
vmovdqu8 0*VL(SRC), GHASHDATA0
vmovdqu8 1*VL(SRC), GHASHDATA1
vmovdqu8 2*VL(SRC), GHASHDATA2
vmovdqu8 3*VL(SRC), GHASHDATA3
vmovdqu8 0*64(SRC), GHASHDATA0
vmovdqu8 1*64(SRC), GHASHDATA1
vmovdqu8 2*64(SRC), GHASHDATA2
vmovdqu8 3*64(SRC), GHASHDATA3
.endif
// Start the AES encryption of the counter blocks.
@@ -775,17 +732,18 @@
_vaesenc_4x RNDKEY
128:
// Finish the AES encryption of the counter blocks in V0-V3, interleaved
// with the GHASH update of the ciphertext blocks in GHASHDATA[0-3].
// Finish the AES encryption of the counter blocks in %zmm[0-3],
// interleaved with the GHASH update of the ciphertext blocks in
// GHASHDATA[0-3].
.irp i, 9,8,7,6,5,4,3,2,1
_ghash_step_4x (9 - \i)
_vaesenc_4x RNDKEY_M\i
.endr
_ghash_step_4x 9
_aesenclast_and_xor_4x
sub $-4*VL, SRC // shorter than 'add 4*VL' when VL=32
sub $-4*VL, DST
add $-4*VL, DATALEN
add $256, SRC
add $256, DST
sub $256, DATALEN
jge .Lcrypt_loop_4x\@
.if \enc
@@ -798,21 +756,22 @@
.Lcrypt_loop_4x_done\@:
// Undo the extra subtraction by 4*VL and check whether data remains.
sub $-4*VL, DATALEN // shorter than 'add 4*VL' when VL=32
// Undo the extra subtraction by 256 and check whether data remains.
add $256, DATALEN
jz .Ldone\@
// The data length isn't a multiple of 4*VL. Process the remaining data
// of length 1 <= DATALEN < 4*VL, up to one vector (VL bytes) at a time.
// Going one vector at a time may seem inefficient compared to having
// separate code paths for each possible number of vectors remaining.
// However, using a loop keeps the code size down, and it performs
// surprising well; modern CPUs will start executing the next iteration
// before the previous one finishes and also predict the number of loop
// iterations. For a similar reason, we roll up the AES rounds.
// The data length isn't a multiple of 256 bytes. Process the remaining
// data of length 1 <= DATALEN < 256, up to one 64-byte vector at a
// time. Going one vector at a time may seem inefficient compared to
// having separate code paths for each possible number of vectors
// remaining. However, using a loop keeps the code size down, and it
// performs surprising well; modern CPUs will start executing the next
// iteration before the previous one finishes and also predict the
// number of loop iterations. For a similar reason, we roll up the AES
// rounds.
//
// On the last iteration, the remaining length may be less than VL.
// Handle this using masking.
// On the last iteration, the remaining length may be less than 64
// bytes. Handle this using masking.
//
// Since there are enough key powers available for all remaining data,
// there is no need to do a GHASH reduction after each iteration.
@@ -841,65 +800,60 @@
.Lcrypt_loop_1x\@:
// Select the appropriate mask for this iteration: all 1's if
// DATALEN >= VL, otherwise DATALEN 1's. Do this branchlessly using the
// DATALEN >= 64, otherwise DATALEN 1's. Do this branchlessly using the
// bzhi instruction from BMI2. (This relies on DATALEN <= 255.)
.if VL < 64
mov $-1, %eax
bzhi DATALEN, %eax, %eax
kmovd %eax, %k1
.else
mov $-1, %rax
bzhi DATALEN64, %rax, %rax
kmovq %rax, %k1
.endif
// Encrypt a vector of counter blocks. This does not need to be masked.
vpshufb BSWAP_MASK, LE_CTR, V0
vpshufb BSWAP_MASK, LE_CTR, %zmm0
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpxord RNDKEY0, V0, V0
vpxord RNDKEY0, %zmm0, %zmm0
lea 16(KEY), %rax
1:
vbroadcasti32x4 (%rax), RNDKEY
vaesenc RNDKEY, V0, V0
vaesenc RNDKEY, %zmm0, %zmm0
add $16, %rax
cmp %rax, RNDKEYLAST_PTR
jne 1b
vaesenclast RNDKEYLAST, V0, V0
vaesenclast RNDKEYLAST, %zmm0, %zmm0
// XOR the data with the appropriate number of keystream bytes.
vmovdqu8 (SRC), V1{%k1}{z}
vpxord V1, V0, V0
vmovdqu8 V0, (DST){%k1}
vmovdqu8 (SRC), %zmm1{%k1}{z}
vpxord %zmm1, %zmm0, %zmm0
vmovdqu8 %zmm0, (DST){%k1}
// Update GHASH with the ciphertext block(s), without reducing.
//
// In the case of DATALEN < VL, the ciphertext is zero-padded to VL.
// (If decrypting, it's done by the above masked load. If encrypting,
// it's done by the below masked register-to-register move.) Note that
// if DATALEN <= VL - 16, there will be additional padding beyond the
// padding of the last block specified by GHASH itself; i.e., there may
// be whole block(s) that get processed by the GHASH multiplication and
// reduction instructions but should not actually be included in the
// In the case of DATALEN < 64, the ciphertext is zero-padded to 64
// bytes. (If decrypting, it's done by the above masked load. If
// encrypting, it's done by the below masked register-to-register move.)
// Note that if DATALEN <= 48, there will be additional padding beyond
// the padding of the last block specified by GHASH itself; i.e., there
// may be whole block(s) that get processed by the GHASH multiplication
// and reduction instructions but should not actually be included in the
// GHASH. However, any such blocks are all-zeroes, and the values that
// they're multiplied with are also all-zeroes. Therefore they just add
// 0 * 0 = 0 to the final GHASH result, which makes no difference.
vmovdqu8 (POWERS_PTR), H_POW1
.if \enc
vmovdqu8 V0, V1{%k1}{z}
vmovdqu8 %zmm0, %zmm1{%k1}{z}
.endif
vpshufb BSWAP_MASK, V1, V0
vpxord GHASH_ACC, V0, V0
_ghash_mul_noreduce H_POW1, V0, LO, MI, HI, GHASHDATA3, V1, V2, V3
vpshufb BSWAP_MASK, %zmm1, %zmm0
vpxord GHASH_ACC, %zmm0, %zmm0
_ghash_mul_noreduce H_POW1, %zmm0, LO, MI, HI, \
GHASHDATA3, %zmm1, %zmm2, %zmm3
vpxor GHASH_ACC_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
add $VL, POWERS_PTR
add $VL, SRC
add $VL, DST
sub $VL, DATALEN
add $64, POWERS_PTR
add $64, SRC
add $64, DST
sub $64, DATALEN
jg .Lcrypt_loop_1x\@
// Finally, do the GHASH reduction.
_ghash_reduce LO, MI, HI, GFPOLY, V0
_ghash_reduce LO, MI, HI, GFPOLY, %zmm0
_horizontal_xor HI, HI_XMM, GHASH_ACC_XMM, %xmm0, %xmm1, %xmm2
.Ldone\@:
@@ -1047,7 +1001,6 @@
RET
.endm
_set_veclen 64
SYM_FUNC_START(aes_gcm_precompute_vaes_avx512)
_aes_gcm_precompute
SYM_FUNC_END(aes_gcm_precompute_vaes_avx512)