Files
linux/net/ipv4/tcp_ipv4.c
Eric Dumazet ecfea98b7d tcp: add net.ipv4.tcp_rcvbuf_low_rtt
This is a follow up of commit aa251c8463 ("tcp: fix too slow
tcp_rcvbuf_grow() action") which brought again the issue that I tried
to fix in commit 65c5287892 ("tcp: fix sk_rcvbuf overshoot")

We also recently increased tcp_rmem[2] to 32 MB in commit 572be9bf9d
("tcp: increase tcp_rmem[2] to 32 MB")

Idea of this patch is to not let tcp_rcvbuf_grow() grow sk->sk_rcvbuf
too fast for small RTT flows. If sk->sk_rcvbuf is too big, this can
force NIC driver to not recycle pages from their page pool, and also
can cause cache evictions for DDIO enabled cpus/NIC, as receivers
are usually slower than senders.

Add net.ipv4.tcp_rcvbuf_low_rtt sysctl, set by default to 1000 usec (1 ms)

If RTT if smaller than the sysctl value, use the RTT/tcp_rcvbuf_low_rtt
ratio to control sk_rcvbuf inflation.

Tested:

Pair of hosts with a 200Gbit IDPF NIC. Using netperf/netserver

Client initiates 8 TCP bulk flows, asking netserver to use CPU #10 only.

super_netperf 8 -H server -T,10 -l 30

On server, use perf -e tcp:tcp_rcvbuf_grow while test is running.

Before:

sysctl -w net.ipv4.tcp_rcvbuf_low_rtt=1
perf record -a -e tcp:tcp_rcvbuf_grow sleep 30 ; perf script|tail -20|cut -c30-230
 1153.051201: tcp:tcp_rcvbuf_grow: time=398 rtt_us=382 copied=6905856 inq=180224 space=6115328 ooo=0 scaling_ratio=240 rcvbuf=27666235 rcv_ssthresh=25878235 window_clamp=25937095 rcv_wnd=25600000 famil
 1153.138752: tcp:tcp_rcvbuf_grow: time=446 rtt_us=413 copied=5529600 inq=180224 space=4505600 ooo=0 scaling_ratio=240 rcvbuf=23068672 rcv_ssthresh=21571860 window_clamp=21626880 rcv_wnd=21286912 famil
 1153.361484: tcp:tcp_rcvbuf_grow: time=415 rtt_us=380 copied=7061504 inq=204800 space=6725632 ooo=0 scaling_ratio=240 rcvbuf=27666235 rcv_ssthresh=25878235 window_clamp=25937095 rcv_wnd=25600000 famil
 1153.457642: tcp:tcp_rcvbuf_grow: time=483 rtt_us=421 copied=5885952 inq=720896 space=4407296 ooo=0 scaling_ratio=240 rcvbuf=23763511 rcv_ssthresh=22223271 window_clamp=22278291 rcv_wnd=21430272 famil
 1153.466002: tcp:tcp_rcvbuf_grow: time=308 rtt_us=281 copied=3244032 inq=180224 space=2883584 ooo=0 scaling_ratio=240 rcvbuf=44854314 rcv_ssthresh=41992059 window_clamp=42050919 rcv_wnd=41713664 famil
 1153.747792: tcp:tcp_rcvbuf_grow: time=394 rtt_us=332 copied=4460544 inq=585728 space=3063808 ooo=0 scaling_ratio=240 rcvbuf=44854314 rcv_ssthresh=41992059 window_clamp=42050919 rcv_wnd=41373696 famil
 1154.260747: tcp:tcp_rcvbuf_grow: time=652 rtt_us=226 copied=10977280 inq=737280 space=9486336 ooo=0 scaling_ratio=240 rcvbuf=31165538 rcv_ssthresh=29197743 window_clamp=29217691 rcv_wnd=28368896 fami
 1154.375019: tcp:tcp_rcvbuf_grow: time=461 rtt_us=443 copied=7573504 inq=507904 space=6856704 ooo=0 scaling_ratio=240 rcvbuf=27666235 rcv_ssthresh=25878235 window_clamp=25937095 rcv_wnd=25288704 famil
 1154.463072: tcp:tcp_rcvbuf_grow: time=494 rtt_us=408 copied=7983104 inq=200704 space=7065600 ooo=0 scaling_ratio=240 rcvbuf=27666235 rcv_ssthresh=25878235 window_clamp=25937095 rcv_wnd=25579520 famil
 1154.474658: tcp:tcp_rcvbuf_grow: time=507 rtt_us=459 copied=5586944 inq=540672 space=4718592 ooo=0 scaling_ratio=240 rcvbuf=17852266 rcv_ssthresh=16692999 window_clamp=16736499 rcv_wnd=16056320 famil
 1154.584657: tcp:tcp_rcvbuf_grow: time=494 rtt_us=427 copied=8126464 inq=204800 space=7782400 ooo=0 scaling_ratio=240 rcvbuf=27666235 rcv_ssthresh=25878235 window_clamp=25937095 rcv_wnd=25600000 famil
 1154.702117: tcp:tcp_rcvbuf_grow: time=480 rtt_us=406 copied=5734400 inq=180224 space=5349376 ooo=0 scaling_ratio=240 rcvbuf=23068672 rcv_ssthresh=21571860 window_clamp=21626880 rcv_wnd=21286912 famil
 1155.941595: tcp:tcp_rcvbuf_grow: time=717 rtt_us=670 copied=11042816 inq=3784704 space=7159808 ooo=0 scaling_ratio=240 rcvbuf=19581357 rcv_ssthresh=18333222 window_clamp=18357522 rcv_wnd=14614528 fam
 1156.384735: tcp:tcp_rcvbuf_grow: time=529 rtt_us=473 copied=9011200 inq=180224 space=7258112 ooo=0 scaling_ratio=240 rcvbuf=19581357 rcv_ssthresh=18333222 window_clamp=18357522 rcv_wnd=18018304 famil
 1157.821676: tcp:tcp_rcvbuf_grow: time=529 rtt_us=272 copied=8224768 inq=602112 space=6545408 ooo=0 scaling_ratio=240 rcvbuf=67000000 rcv_ssthresh=62793576 window_clamp=62812500 rcv_wnd=62115840 famil
 1158.906379: tcp:tcp_rcvbuf_grow: time=710 rtt_us=445 copied=11845632 inq=540672 space=10240000 ooo=0 scaling_ratio=240 rcvbuf=31165538 rcv_ssthresh=29205935 window_clamp=29217691 rcv_wnd=28536832 fam
 1164.600160: tcp:tcp_rcvbuf_grow: time=841 rtt_us=430 copied=12976128 inq=1290240 space=11304960 ooo=0 scaling_ratio=240 rcvbuf=31165538 rcv_ssthresh=29212591 window_clamp=29217691 rcv_wnd=27856896 fa
 1165.163572: tcp:tcp_rcvbuf_grow: time=845 rtt_us=800 copied=12632064 inq=540672 space=7921664 ooo=0 scaling_ratio=240 rcvbuf=27666235 rcv_ssthresh=25912795 window_clamp=25937095 rcv_wnd=25260032 fami
 1165.653464: tcp:tcp_rcvbuf_grow: time=388 rtt_us=309 copied=4493312 inq=180224 space=3874816 ooo=0 scaling_ratio=240 rcvbuf=44854314 rcv_ssthresh=41995899 window_clamp=42050919 rcv_wnd=41713664 famil
 1166.651211: tcp:tcp_rcvbuf_grow: time=556 rtt_us=553 copied=6328320 inq=540672 space=5554176 ooo=0 scaling_ratio=240 rcvbuf=23068672 rcv_ssthresh=21571860 window_clamp=21626880 rcv_wnd=20946944 famil

After:

sysctl -w net.ipv4.tcp_rcvbuf_low_rtt=1000
perf record -a -e tcp:tcp_rcvbuf_grow sleep 30 ; perf script|tail -20|cut -c30-230
 1457.053149: tcp:tcp_rcvbuf_grow: time=128 rtt_us=24 copied=1441792 inq=40960 space=1269760 ooo=0 scaling_ratio=240 rcvbuf=2960741 rcv_ssthresh=2605474 window_clamp=2775694 rcv_wnd=2568192 family=AF_I
 1458.000778: tcp:tcp_rcvbuf_grow: time=128 rtt_us=31 copied=1441792 inq=24576 space=1400832 ooo=0 scaling_ratio=240 rcvbuf=3060163 rcv_ssthresh=2810042 window_clamp=2868902 rcv_wnd=2674688 family=AF_I
 1458.088059: tcp:tcp_rcvbuf_grow: time=190 rtt_us=110 copied=3227648 inq=385024 space=2781184 ooo=0 scaling_ratio=240 rcvbuf=6728240 rcv_ssthresh=6252705 window_clamp=6307725 rcv_wnd=5799936 family=AF
 1458.148549: tcp:tcp_rcvbuf_grow: time=232 rtt_us=129 copied=3956736 inq=237568 space=2842624 ooo=0 scaling_ratio=240 rcvbuf=6731333 rcv_ssthresh=6252705 window_clamp=6310624 rcv_wnd=5918720 family=AF
 1458.466861: tcp:tcp_rcvbuf_grow: time=193 rtt_us=83 copied=2949120 inq=180224 space=2457600 ooo=0 scaling_ratio=240 rcvbuf=5751438 rcv_ssthresh=5357689 window_clamp=5391973 rcv_wnd=5054464 family=AF_
 1458.775476: tcp:tcp_rcvbuf_grow: time=257 rtt_us=127 copied=4304896 inq=352256 space=3346432 ooo=0 scaling_ratio=240 rcvbuf=8067131 rcv_ssthresh=7523275 window_clamp=7562935 rcv_wnd=7061504 family=AF
 1458.776631: tcp:tcp_rcvbuf_grow: time=200 rtt_us=96 copied=3260416 inq=143360 space=2768896 ooo=0 scaling_ratio=240 rcvbuf=6397256 rcv_ssthresh=5938567 window_clamp=5997427 rcv_wnd=5828608 family=AF_
 1459.707973: tcp:tcp_rcvbuf_grow: time=215 rtt_us=96 copied=2506752 inq=163840 space=1388544 ooo=0 scaling_ratio=240 rcvbuf=3068867 rcv_ssthresh=2768282 window_clamp=2877062 rcv_wnd=2555904 family=AF_
 1460.246494: tcp:tcp_rcvbuf_grow: time=231 rtt_us=80 copied=3756032 inq=204800 space=3117056 ooo=0 scaling_ratio=240 rcvbuf=7288091 rcv_ssthresh=6773725 window_clamp=6832585 rcv_wnd=6471680 family=AF_
 1460.714596: tcp:tcp_rcvbuf_grow: time=270 rtt_us=110 copied=4714496 inq=311296 space=3719168 ooo=0 scaling_ratio=240 rcvbuf=8957739 rcv_ssthresh=8339020 window_clamp=8397880 rcv_wnd=7933952 family=AF
 1462.029977: tcp:tcp_rcvbuf_grow: time=101 rtt_us=19 copied=1105920 inq=40960 space=1036288 ooo=0 scaling_ratio=240 rcvbuf=2338970 rcv_ssthresh=2091684 window_clamp=2192784 rcv_wnd=1986560 family=AF_I
 1462.802385: tcp:tcp_rcvbuf_grow: time=89 rtt_us=45 copied=1069056 inq=0 space=1064960 ooo=0 scaling_ratio=240 rcvbuf=2338970 rcv_ssthresh=2091684 window_clamp=2192784 rcv_wnd=2035712 family=AF_INET6
 1462.918648: tcp:tcp_rcvbuf_grow: time=105 rtt_us=33 copied=1441792 inq=180224 space=1069056 ooo=0 scaling_ratio=240 rcvbuf=2383282 rcv_ssthresh=2091684 window_clamp=2234326 rcv_wnd=1896448 family=AF_
 1463.222533: tcp:tcp_rcvbuf_grow: time=273 rtt_us=144 copied=4603904 inq=385024 space=3469312 ooo=0 scaling_ratio=240 rcvbuf=8422564 rcv_ssthresh=7891053 window_clamp=7896153 rcv_wnd=7409664 family=AF
 1466.519312: tcp:tcp_rcvbuf_grow: time=130 rtt_us=23 copied=1343488 inq=0 space=1261568 ooo=0 scaling_ratio=240 rcvbuf=2780158 rcv_ssthresh=2493778 window_clamp=2606398 rcv_wnd=2494464 family=AF_INET6
 1466.681003: tcp:tcp_rcvbuf_grow: time=128 rtt_us=21 copied=1441792 inq=12288 space=1343488 ooo=0 scaling_ratio=240 rcvbuf=2932027 rcv_ssthresh=2578555 window_clamp=2748775 rcv_wnd=2568192 family=AF_I
 1470.689959: tcp:tcp_rcvbuf_grow: time=255 rtt_us=122 copied=3932160 inq=204800 space=3551232 ooo=0 scaling_ratio=240 rcvbuf=8182038 rcv_ssthresh=7647384 window_clamp=7670660 rcv_wnd=7442432 family=AF
 1471.754154: tcp:tcp_rcvbuf_grow: time=188 rtt_us=95 copied=2138112 inq=577536 space=1429504 ooo=0 scaling_ratio=240 rcvbuf=3113650 rcv_ssthresh=2806426 window_clamp=2919046 rcv_wnd=2248704 family=AF_
 1476.813542: tcp:tcp_rcvbuf_grow: time=269 rtt_us=99 copied=3088384 inq=180224 space=2564096 ooo=0 scaling_ratio=240 rcvbuf=6219470 rcv_ssthresh=5771893 window_clamp=5830753 rcv_wnd=5509120 family=AF_
 1477.738309: tcp:tcp_rcvbuf_grow: time=166 rtt_us=54 copied=1777664 inq=180224 space=1417216 ooo=0 scaling_ratio=240 rcvbuf=3117118 rcv_ssthresh=2874958 window_clamp=2922298 rcv_wnd=2613248 family=AF_

We can see sk_rcvbuf values are much smaller, and that rtt_us (estimation of rtt
from a receiver point of view) is kept small, instead of being bloated.

No difference in throughput.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@google.com>
Tested-by: Paolo Abeni <pabeni@redhat.com>
Link: https://patch.msgid.link/20251119084813.3684576-3-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-11-20 17:44:23 -08:00

3764 lines
100 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Implementation of the Transmission Control Protocol(TCP).
*
* IPv4 specific functions
*
* code split from:
* linux/ipv4/tcp.c
* linux/ipv4/tcp_input.c
* linux/ipv4/tcp_output.c
*
* See tcp.c for author information
*/
/*
* Changes:
* David S. Miller : New socket lookup architecture.
* This code is dedicated to John Dyson.
* David S. Miller : Change semantics of established hash,
* half is devoted to TIME_WAIT sockets
* and the rest go in the other half.
* Andi Kleen : Add support for syncookies and fixed
* some bugs: ip options weren't passed to
* the TCP layer, missed a check for an
* ACK bit.
* Andi Kleen : Implemented fast path mtu discovery.
* Fixed many serious bugs in the
* request_sock handling and moved
* most of it into the af independent code.
* Added tail drop and some other bugfixes.
* Added new listen semantics.
* Mike McLagan : Routing by source
* Juan Jose Ciarlante: ip_dynaddr bits
* Andi Kleen: various fixes.
* Vitaly E. Lavrov : Transparent proxy revived after year
* coma.
* Andi Kleen : Fix new listen.
* Andi Kleen : Fix accept error reporting.
* YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
* Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
* a single port at the same time.
*/
#define pr_fmt(fmt) "TCP: " fmt
#include <linux/bottom_half.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/cache.h>
#include <linux/fips.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/times.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/sock_diag.h>
#include <net/aligned_data.h>
#include <net/net_namespace.h>
#include <net/icmp.h>
#include <net/inet_hashtables.h>
#include <net/tcp.h>
#include <net/tcp_ecn.h>
#include <net/transp_v6.h>
#include <net/ipv6.h>
#include <net/inet_common.h>
#include <net/inet_ecn.h>
#include <net/timewait_sock.h>
#include <net/xfrm.h>
#include <net/secure_seq.h>
#include <net/busy_poll.h>
#include <net/rstreason.h>
#include <net/psp.h>
#include <linux/inet.h>
#include <linux/ipv6.h>
#include <linux/stddef.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/inetdevice.h>
#include <linux/btf_ids.h>
#include <linux/skbuff_ref.h>
#include <crypto/md5.h>
#include <trace/events/tcp.h>
#ifdef CONFIG_TCP_MD5SIG
static void tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
__be32 daddr, __be32 saddr, const struct tcphdr *th);
#endif
struct inet_hashinfo tcp_hashinfo;
static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = {
.bh_lock = INIT_LOCAL_LOCK(bh_lock),
};
static DEFINE_MUTEX(tcp_exit_batch_mutex);
static u32 tcp_v4_init_seq(const struct sk_buff *skb)
{
return secure_tcp_seq(ip_hdr(skb)->daddr,
ip_hdr(skb)->saddr,
tcp_hdr(skb)->dest,
tcp_hdr(skb)->source);
}
static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
{
return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
}
int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
{
int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
const struct inet_timewait_sock *tw = inet_twsk(sktw);
const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
struct tcp_sock *tp = tcp_sk(sk);
int ts_recent_stamp;
u32 reuse_thresh;
if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2)
reuse = 0;
if (reuse == 2) {
/* Still does not detect *everything* that goes through
* lo, since we require a loopback src or dst address
* or direct binding to 'lo' interface.
*/
bool loopback = false;
if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
loopback = true;
#if IS_ENABLED(CONFIG_IPV6)
if (tw->tw_family == AF_INET6) {
if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
loopback = true;
} else
#endif
{
if (ipv4_is_loopback(tw->tw_daddr) ||
ipv4_is_loopback(tw->tw_rcv_saddr))
loopback = true;
}
if (!loopback)
reuse = 0;
}
/* With PAWS, it is safe from the viewpoint
of data integrity. Even without PAWS it is safe provided sequence
spaces do not overlap i.e. at data rates <= 80Mbit/sec.
Actually, the idea is close to VJ's one, only timestamp cache is
held not per host, but per port pair and TW bucket is used as state
holder.
If TW bucket has been already destroyed we fall back to VJ's scheme
and use initial timestamp retrieved from peer table.
*/
ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
reuse_thresh = READ_ONCE(tw->tw_entry_stamp) +
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse_delay);
if (ts_recent_stamp &&
(!twp || (reuse && time_after32(tcp_clock_ms(), reuse_thresh)))) {
/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
* and releasing the bucket lock.
*/
if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
return 0;
/* In case of repair and re-using TIME-WAIT sockets we still
* want to be sure that it is safe as above but honor the
* sequence numbers and time stamps set as part of the repair
* process.
*
* Without this check re-using a TIME-WAIT socket with TCP
* repair would accumulate a -1 on the repair assigned
* sequence number. The first time it is reused the sequence
* is -1, the second time -2, etc. This fixes that issue
* without appearing to create any others.
*/
if (likely(!tp->repair)) {
u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
if (!seq)
seq = 1;
WRITE_ONCE(tp->write_seq, seq);
tp->rx_opt.ts_recent = READ_ONCE(tcptw->tw_ts_recent);
tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
}
return 1;
}
return 0;
}
EXPORT_IPV6_MOD_GPL(tcp_twsk_unique);
static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
int addr_len)
{
/* This check is replicated from tcp_v4_connect() and intended to
* prevent BPF program called below from accessing bytes that are out
* of the bound specified by user in addr_len.
*/
if (addr_len < sizeof(struct sockaddr_in))
return -EINVAL;
sock_owned_by_me(sk);
return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
}
/* This will initiate an outgoing connection. */
int tcp_v4_connect(struct sock *sk, struct sockaddr_unsized *uaddr, int addr_len)
{
struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
struct inet_timewait_death_row *tcp_death_row;
struct inet_sock *inet = inet_sk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct ip_options_rcu *inet_opt;
struct net *net = sock_net(sk);
__be16 orig_sport, orig_dport;
__be32 daddr, nexthop;
struct flowi4 *fl4;
struct rtable *rt;
int err;
if (addr_len < sizeof(struct sockaddr_in))
return -EINVAL;
if (usin->sin_family != AF_INET)
return -EAFNOSUPPORT;
nexthop = daddr = usin->sin_addr.s_addr;
inet_opt = rcu_dereference_protected(inet->inet_opt,
lockdep_sock_is_held(sk));
if (inet_opt && inet_opt->opt.srr) {
if (!daddr)
return -EINVAL;
nexthop = inet_opt->opt.faddr;
}
orig_sport = inet->inet_sport;
orig_dport = usin->sin_port;
fl4 = &inet->cork.fl.u.ip4;
rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
orig_dport, sk);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
if (err == -ENETUNREACH)
IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
return err;
}
if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
ip_rt_put(rt);
return -ENETUNREACH;
}
if (!inet_opt || !inet_opt->opt.srr)
daddr = fl4->daddr;
tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
if (!inet->inet_saddr) {
err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET);
if (err) {
ip_rt_put(rt);
return err;
}
} else {
sk_rcv_saddr_set(sk, inet->inet_saddr);
}
if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
/* Reset inherited state */
tp->rx_opt.ts_recent = 0;
tp->rx_opt.ts_recent_stamp = 0;
if (likely(!tp->repair))
WRITE_ONCE(tp->write_seq, 0);
}
inet->inet_dport = usin->sin_port;
sk_daddr_set(sk, daddr);
inet_csk(sk)->icsk_ext_hdr_len = psp_sk_overhead(sk);
if (inet_opt)
inet_csk(sk)->icsk_ext_hdr_len += inet_opt->opt.optlen;
tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
/* Socket identity is still unknown (sport may be zero).
* However we set state to SYN-SENT and not releasing socket
* lock select source port, enter ourselves into the hash tables and
* complete initialization after this.
*/
tcp_set_state(sk, TCP_SYN_SENT);
err = inet_hash_connect(tcp_death_row, sk);
if (err)
goto failure;
sk_set_txhash(sk);
rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
inet->inet_sport, inet->inet_dport, sk);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
rt = NULL;
goto failure;
}
tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
/* OK, now commit destination to socket. */
sk->sk_gso_type = SKB_GSO_TCPV4;
sk_setup_caps(sk, &rt->dst);
rt = NULL;
if (likely(!tp->repair)) {
if (!tp->write_seq)
WRITE_ONCE(tp->write_seq,
secure_tcp_seq(inet->inet_saddr,
inet->inet_daddr,
inet->inet_sport,
usin->sin_port));
WRITE_ONCE(tp->tsoffset,
secure_tcp_ts_off(net, inet->inet_saddr,
inet->inet_daddr));
}
atomic_set(&inet->inet_id, get_random_u16());
if (tcp_fastopen_defer_connect(sk, &err))
return err;
if (err)
goto failure;
err = tcp_connect(sk);
if (err)
goto failure;
return 0;
failure:
/*
* This unhashes the socket and releases the local port,
* if necessary.
*/
tcp_set_state(sk, TCP_CLOSE);
inet_bhash2_reset_saddr(sk);
ip_rt_put(rt);
sk->sk_route_caps = 0;
inet->inet_dport = 0;
return err;
}
EXPORT_IPV6_MOD(tcp_v4_connect);
/*
* This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
* It can be called through tcp_release_cb() if socket was owned by user
* at the time tcp_v4_err() was called to handle ICMP message.
*/
void tcp_v4_mtu_reduced(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct dst_entry *dst;
u32 mtu;
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
return;
mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
dst = inet_csk_update_pmtu(sk, mtu);
if (!dst)
return;
/* Something is about to be wrong... Remember soft error
* for the case, if this connection will not able to recover.
*/
if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
mtu = dst_mtu(dst);
if (inet->pmtudisc != IP_PMTUDISC_DONT &&
ip_sk_accept_pmtu(sk) &&
inet_csk(sk)->icsk_pmtu_cookie > mtu) {
tcp_sync_mss(sk, mtu);
/* Resend the TCP packet because it's
* clear that the old packet has been
* dropped. This is the new "fast" path mtu
* discovery.
*/
tcp_simple_retransmit(sk);
} /* else let the usual retransmit timer handle it */
}
EXPORT_IPV6_MOD(tcp_v4_mtu_reduced);
static void do_redirect(struct sk_buff *skb, struct sock *sk)
{
struct dst_entry *dst = __sk_dst_check(sk, 0);
if (dst)
dst->ops->redirect(dst, sk, skb);
}
/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
void tcp_req_err(struct sock *sk, u32 seq, bool abort)
{
struct request_sock *req = inet_reqsk(sk);
struct net *net = sock_net(sk);
/* ICMPs are not backlogged, hence we cannot get
* an established socket here.
*/
if (seq != tcp_rsk(req)->snt_isn) {
__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
} else if (abort) {
/*
* Still in SYN_RECV, just remove it silently.
* There is no good way to pass the error to the newly
* created socket, and POSIX does not want network
* errors returned from accept().
*/
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
tcp_listendrop(req->rsk_listener);
}
reqsk_put(req);
}
EXPORT_IPV6_MOD(tcp_req_err);
/* TCP-LD (RFC 6069) logic */
void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
s32 remaining;
u32 delta_us;
if (sock_owned_by_user(sk))
return;
if (seq != tp->snd_una || !icsk->icsk_retransmits ||
!icsk->icsk_backoff)
return;
skb = tcp_rtx_queue_head(sk);
if (WARN_ON_ONCE(!skb))
return;
icsk->icsk_backoff--;
icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
icsk->icsk_rto = inet_csk_rto_backoff(icsk, tcp_rto_max(sk));
tcp_mstamp_refresh(tp);
delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
if (remaining > 0) {
tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, remaining, false);
} else {
/* RTO revert clocked out retransmission.
* Will retransmit now.
*/
tcp_retransmit_timer(sk);
}
}
EXPORT_IPV6_MOD(tcp_ld_RTO_revert);
/*
* This routine is called by the ICMP module when it gets some
* sort of error condition. If err < 0 then the socket should
* be closed and the error returned to the user. If err > 0
* it's just the icmp type << 8 | icmp code. After adjustment
* header points to the first 8 bytes of the tcp header. We need
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
int tcp_v4_err(struct sk_buff *skb, u32 info)
{
const struct iphdr *iph = (const struct iphdr *)skb->data;
struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
struct net *net = dev_net_rcu(skb->dev);
const int type = icmp_hdr(skb)->type;
const int code = icmp_hdr(skb)->code;
struct request_sock *fastopen;
struct tcp_sock *tp;
u32 seq, snd_una;
struct sock *sk;
int err;
sk = __inet_lookup_established(net, iph->daddr, th->dest, iph->saddr,
ntohs(th->source), inet_iif(skb), 0);
if (!sk) {
__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
return -ENOENT;
}
if (sk->sk_state == TCP_TIME_WAIT) {
/* To increase the counter of ignored icmps for TCP-AO */
tcp_ao_ignore_icmp(sk, AF_INET, type, code);
inet_twsk_put(inet_twsk(sk));
return 0;
}
seq = ntohl(th->seq);
if (sk->sk_state == TCP_NEW_SYN_RECV) {
tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
type == ICMP_TIME_EXCEEDED ||
(type == ICMP_DEST_UNREACH &&
(code == ICMP_NET_UNREACH ||
code == ICMP_HOST_UNREACH)));
return 0;
}
if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
sock_put(sk);
return 0;
}
bh_lock_sock(sk);
/* If too many ICMPs get dropped on busy
* servers this needs to be solved differently.
* We do take care of PMTU discovery (RFC1191) special case :
* we can receive locally generated ICMP messages while socket is held.
*/
if (sock_owned_by_user(sk)) {
if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
}
if (sk->sk_state == TCP_CLOSE)
goto out;
if (static_branch_unlikely(&ip4_min_ttl)) {
/* min_ttl can be changed concurrently from do_ip_setsockopt() */
if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
goto out;
}
}
tp = tcp_sk(sk);
/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
fastopen = rcu_dereference(tp->fastopen_rsk);
snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
if (sk->sk_state != TCP_LISTEN &&
!between(seq, snd_una, tp->snd_nxt)) {
__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
goto out;
}
switch (type) {
case ICMP_REDIRECT:
if (!sock_owned_by_user(sk))
do_redirect(skb, sk);
goto out;
case ICMP_SOURCE_QUENCH:
/* Just silently ignore these. */
goto out;
case ICMP_PARAMETERPROB:
err = EPROTO;
break;
case ICMP_DEST_UNREACH:
if (code > NR_ICMP_UNREACH)
goto out;
if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
/* We are not interested in TCP_LISTEN and open_requests
* (SYN-ACKs send out by Linux are always <576bytes so
* they should go through unfragmented).
*/
if (sk->sk_state == TCP_LISTEN)
goto out;
WRITE_ONCE(tp->mtu_info, info);
if (!sock_owned_by_user(sk)) {
tcp_v4_mtu_reduced(sk);
} else {
if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
sock_hold(sk);
}
goto out;
}
err = icmp_err_convert[code].errno;
/* check if this ICMP message allows revert of backoff.
* (see RFC 6069)
*/
if (!fastopen &&
(code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
tcp_ld_RTO_revert(sk, seq);
break;
case ICMP_TIME_EXCEEDED:
err = EHOSTUNREACH;
break;
default:
goto out;
}
switch (sk->sk_state) {
case TCP_SYN_SENT:
case TCP_SYN_RECV:
/* Only in fast or simultaneous open. If a fast open socket is
* already accepted it is treated as a connected one below.
*/
if (fastopen && !fastopen->sk)
break;
ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
if (!sock_owned_by_user(sk))
tcp_done_with_error(sk, err);
else
WRITE_ONCE(sk->sk_err_soft, err);
goto out;
}
/* If we've already connected we will keep trying
* until we time out, or the user gives up.
*
* rfc1122 4.2.3.9 allows to consider as hard errors
* only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
* but it is obsoleted by pmtu discovery).
*
* Note, that in modern internet, where routing is unreliable
* and in each dark corner broken firewalls sit, sending random
* errors ordered by their masters even this two messages finally lose
* their original sense (even Linux sends invalid PORT_UNREACHs)
*
* Now we are in compliance with RFCs.
* --ANK (980905)
*/
if (!sock_owned_by_user(sk) &&
inet_test_bit(RECVERR, sk)) {
WRITE_ONCE(sk->sk_err, err);
sk_error_report(sk);
} else { /* Only an error on timeout */
WRITE_ONCE(sk->sk_err_soft, err);
}
out:
bh_unlock_sock(sk);
sock_put(sk);
return 0;
}
void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
{
struct tcphdr *th = tcp_hdr(skb);
th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct tcphdr, check);
}
/* This routine computes an IPv4 TCP checksum. */
void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
{
const struct inet_sock *inet = inet_sk(sk);
__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
}
EXPORT_IPV6_MOD(tcp_v4_send_check);
#define REPLY_OPTIONS_LEN (MAX_TCP_OPTION_SPACE / sizeof(__be32))
static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
const struct tcp_ao_hdr *aoh,
struct ip_reply_arg *arg, struct tcphdr *reply,
__be32 reply_options[REPLY_OPTIONS_LEN])
{
#ifdef CONFIG_TCP_AO
int sdif = tcp_v4_sdif(skb);
int dif = inet_iif(skb);
int l3index = sdif ? dif : 0;
bool allocated_traffic_key;
struct tcp_ao_key *key;
char *traffic_key;
bool drop = true;
u32 ao_sne = 0;
u8 keyid;
rcu_read_lock();
if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
&key, &traffic_key, &allocated_traffic_key,
&keyid, &ao_sne))
goto out;
reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
(aoh->rnext_keyid << 8) | keyid);
arg->iov[0].iov_len += tcp_ao_len_aligned(key);
reply->doff = arg->iov[0].iov_len / 4;
if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
key, traffic_key,
(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
reply, ao_sne))
goto out;
drop = false;
out:
rcu_read_unlock();
if (allocated_traffic_key)
kfree(traffic_key);
return drop;
#else
return true;
#endif
}
/*
* This routine will send an RST to the other tcp.
*
* Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
* for reset.
* Answer: if a packet caused RST, it is not for a socket
* existing in our system, if it is matched to a socket,
* it is just duplicate segment or bug in other side's TCP.
* So that we build reply only basing on parameters
* arrived with segment.
* Exception: precedence violation. We do not implement it in any case.
*/
static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
enum sk_rst_reason reason)
{
const struct tcphdr *th = tcp_hdr(skb);
struct {
struct tcphdr th;
__be32 opt[REPLY_OPTIONS_LEN];
} rep;
const __u8 *md5_hash_location = NULL;
const struct tcp_ao_hdr *aoh;
struct ip_reply_arg arg;
#ifdef CONFIG_TCP_MD5SIG
struct tcp_md5sig_key *key = NULL;
unsigned char newhash[16];
struct sock *sk1 = NULL;
#endif
u64 transmit_time = 0;
struct sock *ctl_sk;
struct net *net;
u32 txhash = 0;
/* Never send a reset in response to a reset. */
if (th->rst)
return;
/* If sk not NULL, it means we did a successful lookup and incoming
* route had to be correct. prequeue might have dropped our dst.
*/
if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
return;
/* Swap the send and the receive. */
memset(&rep, 0, sizeof(rep));
rep.th.dest = th->source;
rep.th.source = th->dest;
rep.th.doff = sizeof(struct tcphdr) / 4;
rep.th.rst = 1;
if (th->ack) {
rep.th.seq = th->ack_seq;
} else {
rep.th.ack = 1;
rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
skb->len - (th->doff << 2));
}
memset(&arg, 0, sizeof(arg));
arg.iov[0].iov_base = (unsigned char *)&rep;
arg.iov[0].iov_len = sizeof(rep.th);
net = sk ? sock_net(sk) : skb_dst_dev_net_rcu(skb);
/* Invalid TCP option size or twice included auth */
if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
return;
if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
return;
#ifdef CONFIG_TCP_MD5SIG
rcu_read_lock();
if (sk && sk_fullsock(sk)) {
const union tcp_md5_addr *addr;
int l3index;
/* sdif set, means packet ingressed via a device
* in an L3 domain and inet_iif is set to it.
*/
l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
} else if (md5_hash_location) {
const union tcp_md5_addr *addr;
int sdif = tcp_v4_sdif(skb);
int dif = inet_iif(skb);
int l3index;
/*
* active side is lost. Try to find listening socket through
* source port, and then find md5 key through listening socket.
* we are not loose security here:
* Incoming packet is checked with md5 hash with finding key,
* no RST generated if md5 hash doesn't match.
*/
sk1 = __inet_lookup_listener(net, NULL, 0, ip_hdr(skb)->saddr,
th->source, ip_hdr(skb)->daddr,
ntohs(th->source), dif, sdif);
/* don't send rst if it can't find key */
if (!sk1)
goto out;
/* sdif set, means packet ingressed via a device
* in an L3 domain and dif is set to it.
*/
l3index = sdif ? dif : 0;
addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
if (!key)
goto out;
tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
if (memcmp(md5_hash_location, newhash, 16) != 0)
goto out;
}
if (key) {
rep.opt[0] = htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_MD5SIG << 8) |
TCPOLEN_MD5SIG);
/* Update length and the length the header thinks exists */
arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
rep.th.doff = arg.iov[0].iov_len / 4;
tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
key, ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, &rep.th);
}
#endif
/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
if (rep.opt[0] == 0) {
__be32 mrst = mptcp_reset_option(skb);
if (mrst) {
rep.opt[0] = mrst;
arg.iov[0].iov_len += sizeof(mrst);
rep.th.doff = arg.iov[0].iov_len / 4;
}
}
arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
ip_hdr(skb)->saddr, /* XXX */
arg.iov[0].iov_len, IPPROTO_TCP, 0);
arg.csumoffset = offsetof(struct tcphdr, check) / 2;
arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
/* When socket is gone, all binding information is lost.
* routing might fail in this case. No choice here, if we choose to force
* input interface, we will misroute in case of asymmetric route.
*/
if (sk)
arg.bound_dev_if = sk->sk_bound_dev_if;
trace_tcp_send_reset(sk, skb, reason);
BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
offsetof(struct inet_timewait_sock, tw_bound_dev_if));
/* ECN bits of TW reset are cleared */
arg.tos = ip_hdr(skb)->tos & ~INET_ECN_MASK;
arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
local_bh_disable();
local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
sock_net_set(ctl_sk, net);
if (sk) {
ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
transmit_time = tcp_transmit_time(sk);
xfrm_sk_clone_policy(ctl_sk, sk);
txhash = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_txhash : sk->sk_txhash;
} else {
ctl_sk->sk_mark = 0;
ctl_sk->sk_priority = 0;
}
ip_send_unicast_reply(ctl_sk, sk,
skb, &TCP_SKB_CB(skb)->header.h4.opt,
ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
&arg, arg.iov[0].iov_len,
transmit_time, txhash);
xfrm_sk_free_policy(ctl_sk);
sock_net_set(ctl_sk, &init_net);
__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
local_bh_enable();
#ifdef CONFIG_TCP_MD5SIG
out:
rcu_read_unlock();
#endif
}
/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
outside socket context is ugly, certainly. What can I do?
*/
static void tcp_v4_send_ack(const struct sock *sk,
struct sk_buff *skb, u32 seq, u32 ack,
u32 win, u32 tsval, u32 tsecr, int oif,
struct tcp_key *key,
int reply_flags, u8 tos, u32 txhash)
{
const struct tcphdr *th = tcp_hdr(skb);
struct {
struct tcphdr th;
__be32 opt[(MAX_TCP_OPTION_SPACE >> 2)];
} rep;
struct net *net = sock_net(sk);
struct ip_reply_arg arg;
struct sock *ctl_sk;
u64 transmit_time;
memset(&rep.th, 0, sizeof(struct tcphdr));
memset(&arg, 0, sizeof(arg));
arg.iov[0].iov_base = (unsigned char *)&rep;
arg.iov[0].iov_len = sizeof(rep.th);
if (tsecr) {
rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
(TCPOPT_TIMESTAMP << 8) |
TCPOLEN_TIMESTAMP);
rep.opt[1] = htonl(tsval);
rep.opt[2] = htonl(tsecr);
arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
}
/* Swap the send and the receive. */
rep.th.dest = th->source;
rep.th.source = th->dest;
rep.th.doff = arg.iov[0].iov_len / 4;
rep.th.seq = htonl(seq);
rep.th.ack_seq = htonl(ack);
rep.th.ack = 1;
rep.th.window = htons(win);
#ifdef CONFIG_TCP_MD5SIG
if (tcp_key_is_md5(key)) {
int offset = (tsecr) ? 3 : 0;
rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_MD5SIG << 8) |
TCPOLEN_MD5SIG);
arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
rep.th.doff = arg.iov[0].iov_len/4;
tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
key->md5_key, ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, &rep.th);
}
#endif
#ifdef CONFIG_TCP_AO
if (tcp_key_is_ao(key)) {
int offset = (tsecr) ? 3 : 0;
rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
(tcp_ao_len(key->ao_key) << 16) |
(key->ao_key->sndid << 8) |
key->rcv_next);
arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
rep.th.doff = arg.iov[0].iov_len / 4;
tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
key->ao_key, key->traffic_key,
(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
&rep.th, key->sne);
}
#endif
arg.flags = reply_flags;
arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
ip_hdr(skb)->saddr, /* XXX */
arg.iov[0].iov_len, IPPROTO_TCP, 0);
arg.csumoffset = offsetof(struct tcphdr, check) / 2;
if (oif)
arg.bound_dev_if = oif;
arg.tos = tos;
arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
local_bh_disable();
local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
sock_net_set(ctl_sk, net);
ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
transmit_time = tcp_transmit_time(sk);
ip_send_unicast_reply(ctl_sk, sk,
skb, &TCP_SKB_CB(skb)->header.h4.opt,
ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
&arg, arg.iov[0].iov_len,
transmit_time, txhash);
sock_net_set(ctl_sk, &init_net);
__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
local_bh_enable();
}
static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb,
enum tcp_tw_status tw_status)
{
struct inet_timewait_sock *tw = inet_twsk(sk);
struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
struct tcp_key key = {};
u8 tos = tw->tw_tos;
/* Cleaning only ECN bits of TW ACKs of oow data or is paws_reject,
* while not cleaning ECN bits of other TW ACKs to avoid these ACKs
* being placed in a different service queues (Classic rather than L4S)
*/
if (tw_status == TCP_TW_ACK_OOW)
tos &= ~INET_ECN_MASK;
#ifdef CONFIG_TCP_AO
struct tcp_ao_info *ao_info;
if (static_branch_unlikely(&tcp_ao_needed.key)) {
/* FIXME: the segment to-be-acked is not verified yet */
ao_info = rcu_dereference(tcptw->ao_info);
if (ao_info) {
const struct tcp_ao_hdr *aoh;
if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
inet_twsk_put(tw);
return;
}
if (aoh)
key.ao_key = tcp_ao_established_key(sk, ao_info,
aoh->rnext_keyid, -1);
}
}
if (key.ao_key) {
struct tcp_ao_key *rnext_key;
key.traffic_key = snd_other_key(key.ao_key);
key.sne = READ_ONCE(ao_info->snd_sne);
rnext_key = READ_ONCE(ao_info->rnext_key);
key.rcv_next = rnext_key->rcvid;
key.type = TCP_KEY_AO;
#else
if (0) {
#endif
} else if (static_branch_tcp_md5()) {
key.md5_key = tcp_twsk_md5_key(tcptw);
if (key.md5_key)
key.type = TCP_KEY_MD5;
}
tcp_v4_send_ack(sk, skb,
tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt),
tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
tcp_tw_tsval(tcptw),
READ_ONCE(tcptw->tw_ts_recent),
tw->tw_bound_dev_if, &key,
tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
tos,
tw->tw_txhash);
inet_twsk_put(tw);
}
static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
struct request_sock *req)
{
struct tcp_key key = {};
/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
* sk->sk_state == TCP_SYN_RECV -> for Fast Open.
*/
u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
tcp_sk(sk)->snd_nxt;
#ifdef CONFIG_TCP_AO
if (static_branch_unlikely(&tcp_ao_needed.key) &&
tcp_rsk_used_ao(req)) {
const union tcp_md5_addr *addr;
const struct tcp_ao_hdr *aoh;
int l3index;
/* Invalid TCP option size or twice included auth */
if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
return;
if (!aoh)
return;
addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
aoh->rnext_keyid, -1);
if (unlikely(!key.ao_key)) {
/* Send ACK with any matching MKT for the peer */
key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
/* Matching key disappeared (user removed the key?)
* let the handshake timeout.
*/
if (!key.ao_key) {
net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
addr,
ntohs(tcp_hdr(skb)->source),
&ip_hdr(skb)->daddr,
ntohs(tcp_hdr(skb)->dest));
return;
}
}
key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
if (!key.traffic_key)
return;
key.type = TCP_KEY_AO;
key.rcv_next = aoh->keyid;
tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
#else
if (0) {
#endif
} else if (static_branch_tcp_md5()) {
const union tcp_md5_addr *addr;
int l3index;
addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
if (key.md5_key)
key.type = TCP_KEY_MD5;
}
/* Cleaning ECN bits of TW ACKs of oow data or is paws_reject */
tcp_v4_send_ack(sk, skb, seq,
tcp_rsk(req)->rcv_nxt,
tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
tcp_rsk_tsval(tcp_rsk(req)),
req->ts_recent,
0, &key,
inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
ip_hdr(skb)->tos & ~INET_ECN_MASK,
READ_ONCE(tcp_rsk(req)->txhash));
if (tcp_key_is_ao(&key))
kfree(key.traffic_key);
}
/*
* Send a SYN-ACK after having received a SYN.
* This still operates on a request_sock only, not on a big
* socket.
*/
static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
struct flowi *fl,
struct request_sock *req,
struct tcp_fastopen_cookie *foc,
enum tcp_synack_type synack_type,
struct sk_buff *syn_skb)
{
struct inet_request_sock *ireq = inet_rsk(req);
struct flowi4 fl4;
int err = -1;
struct sk_buff *skb;
u8 tos;
/* First, grab a route. */
if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
return -1;
skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
if (skb) {
tcp_rsk(req)->syn_ect_snt = inet_sk(sk)->tos & INET_ECN_MASK;
__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
tos = READ_ONCE(inet_sk(sk)->tos);
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
(tos & INET_ECN_MASK);
if (!INET_ECN_is_capable(tos) &&
tcp_bpf_ca_needs_ecn((struct sock *)req))
tos |= INET_ECN_ECT_0;
rcu_read_lock();
err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
ireq->ir_rmt_addr,
rcu_dereference(ireq->ireq_opt),
tos);
rcu_read_unlock();
err = net_xmit_eval(err);
}
return err;
}
/*
* IPv4 request_sock destructor.
*/
static void tcp_v4_reqsk_destructor(struct request_sock *req)
{
kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
}
#ifdef CONFIG_TCP_MD5SIG
/*
* RFC2385 MD5 checksumming requires a mapping of
* IP address->MD5 Key.
* We need to maintain these in the sk structure.
*/
DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
EXPORT_IPV6_MOD(tcp_md5_needed);
static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
{
if (!old)
return true;
/* l3index always overrides non-l3index */
if (old->l3index && new->l3index == 0)
return false;
if (old->l3index == 0 && new->l3index)
return true;
return old->prefixlen < new->prefixlen;
}
/* Find the Key structure for an address. */
struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
const union tcp_md5_addr *addr,
int family, bool any_l3index)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_key *key;
const struct tcp_md5sig_info *md5sig;
__be32 mask;
struct tcp_md5sig_key *best_match = NULL;
bool match;
/* caller either holds rcu_read_lock() or socket lock */
md5sig = rcu_dereference_check(tp->md5sig_info,
lockdep_sock_is_held(sk));
if (!md5sig)
return NULL;
hlist_for_each_entry_rcu(key, &md5sig->head, node,
lockdep_sock_is_held(sk)) {
if (key->family != family)
continue;
if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
key->l3index != l3index)
continue;
if (family == AF_INET) {
mask = inet_make_mask(key->prefixlen);
match = (key->addr.a4.s_addr & mask) ==
(addr->a4.s_addr & mask);
#if IS_ENABLED(CONFIG_IPV6)
} else if (family == AF_INET6) {
match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
key->prefixlen);
#endif
} else {
match = false;
}
if (match && better_md5_match(best_match, key))
best_match = key;
}
return best_match;
}
EXPORT_IPV6_MOD(__tcp_md5_do_lookup);
static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
const union tcp_md5_addr *addr,
int family, u8 prefixlen,
int l3index, u8 flags)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_key *key;
unsigned int size = sizeof(struct in_addr);
const struct tcp_md5sig_info *md5sig;
/* caller either holds rcu_read_lock() or socket lock */
md5sig = rcu_dereference_check(tp->md5sig_info,
lockdep_sock_is_held(sk));
if (!md5sig)
return NULL;
#if IS_ENABLED(CONFIG_IPV6)
if (family == AF_INET6)
size = sizeof(struct in6_addr);
#endif
hlist_for_each_entry_rcu(key, &md5sig->head, node,
lockdep_sock_is_held(sk)) {
if (key->family != family)
continue;
if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
continue;
if (key->l3index != l3index)
continue;
if (!memcmp(&key->addr, addr, size) &&
key->prefixlen == prefixlen)
return key;
}
return NULL;
}
struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
const struct sock *addr_sk)
{
const union tcp_md5_addr *addr;
int l3index;
l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
addr_sk->sk_bound_dev_if);
addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
}
EXPORT_IPV6_MOD(tcp_v4_md5_lookup);
static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_info *md5sig;
md5sig = kmalloc(sizeof(*md5sig), gfp);
if (!md5sig)
return -ENOMEM;
sk_gso_disable(sk);
INIT_HLIST_HEAD(&md5sig->head);
rcu_assign_pointer(tp->md5sig_info, md5sig);
return 0;
}
/* This can be called on a newly created socket, from other files */
static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
int family, u8 prefixlen, int l3index, u8 flags,
const u8 *newkey, u8 newkeylen, gfp_t gfp)
{
/* Add Key to the list */
struct tcp_md5sig_key *key;
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_info *md5sig;
key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
if (key) {
/* Pre-existing entry - just update that one.
* Note that the key might be used concurrently.
* data_race() is telling kcsan that we do not care of
* key mismatches, since changing MD5 key on live flows
* can lead to packet drops.
*/
data_race(memcpy(key->key, newkey, newkeylen));
/* Pairs with READ_ONCE() in tcp_md5_hash_key().
* Also note that a reader could catch new key->keylen value
* but old key->key[], this is the reason we use __GFP_ZERO
* at sock_kmalloc() time below these lines.
*/
WRITE_ONCE(key->keylen, newkeylen);
return 0;
}
md5sig = rcu_dereference_protected(tp->md5sig_info,
lockdep_sock_is_held(sk));
key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
if (!key)
return -ENOMEM;
memcpy(key->key, newkey, newkeylen);
key->keylen = newkeylen;
key->family = family;
key->prefixlen = prefixlen;
key->l3index = l3index;
key->flags = flags;
memcpy(&key->addr, addr,
(IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
sizeof(struct in_addr));
hlist_add_head_rcu(&key->node, &md5sig->head);
return 0;
}
int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
int family, u8 prefixlen, int l3index, u8 flags,
const u8 *newkey, u8 newkeylen)
{
struct tcp_sock *tp = tcp_sk(sk);
if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
if (fips_enabled) {
pr_warn_once("TCP-MD5 support is disabled due to FIPS\n");
return -EOPNOTSUPP;
}
if (tcp_md5sig_info_add(sk, GFP_KERNEL))
return -ENOMEM;
if (!static_branch_inc(&tcp_md5_needed.key)) {
struct tcp_md5sig_info *md5sig;
md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
rcu_assign_pointer(tp->md5sig_info, NULL);
kfree_rcu(md5sig, rcu);
return -EUSERS;
}
}
return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
newkey, newkeylen, GFP_KERNEL);
}
EXPORT_IPV6_MOD(tcp_md5_do_add);
int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
int family, u8 prefixlen, int l3index,
struct tcp_md5sig_key *key)
{
struct tcp_sock *tp = tcp_sk(sk);
if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
return -ENOMEM;
if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
struct tcp_md5sig_info *md5sig;
md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
rcu_assign_pointer(tp->md5sig_info, NULL);
kfree_rcu(md5sig, rcu);
return -EUSERS;
}
}
return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
key->flags, key->key, key->keylen,
sk_gfp_mask(sk, GFP_ATOMIC));
}
EXPORT_IPV6_MOD(tcp_md5_key_copy);
int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
u8 prefixlen, int l3index, u8 flags)
{
struct tcp_md5sig_key *key;
key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
if (!key)
return -ENOENT;
hlist_del_rcu(&key->node);
atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
kfree_rcu(key, rcu);
return 0;
}
EXPORT_IPV6_MOD(tcp_md5_do_del);
void tcp_clear_md5_list(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_key *key;
struct hlist_node *n;
struct tcp_md5sig_info *md5sig;
md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
hlist_del(&key->node);
atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
kfree(key);
}
}
static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
sockptr_t optval, int optlen)
{
struct tcp_md5sig cmd;
struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
const union tcp_md5_addr *addr;
u8 prefixlen = 32;
int l3index = 0;
bool l3flag;
u8 flags;
if (optlen < sizeof(cmd))
return -EINVAL;
if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
return -EFAULT;
if (sin->sin_family != AF_INET)
return -EINVAL;
flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
if (optname == TCP_MD5SIG_EXT &&
cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
prefixlen = cmd.tcpm_prefixlen;
if (prefixlen > 32)
return -EINVAL;
}
if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
if (dev && netif_is_l3_master(dev))
l3index = dev->ifindex;
rcu_read_unlock();
/* ok to reference set/not set outside of rcu;
* right now device MUST be an L3 master
*/
if (!dev || !l3index)
return -EINVAL;
}
addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
if (!cmd.tcpm_keylen)
return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
return -EINVAL;
/* Don't allow keys for peers that have a matching TCP-AO key.
* See the comment in tcp_ao_add_cmd()
*/
if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
return -EKEYREJECTED;
return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
cmd.tcpm_key, cmd.tcpm_keylen);
}
static void tcp_v4_md5_hash_headers(struct md5_ctx *ctx,
__be32 daddr, __be32 saddr,
const struct tcphdr *th, int nbytes)
{
struct {
struct tcp4_pseudohdr ip;
struct tcphdr tcp;
} h;
h.ip.saddr = saddr;
h.ip.daddr = daddr;
h.ip.pad = 0;
h.ip.protocol = IPPROTO_TCP;
h.ip.len = cpu_to_be16(nbytes);
h.tcp = *th;
h.tcp.check = 0;
md5_update(ctx, (const u8 *)&h, sizeof(h.ip) + sizeof(h.tcp));
}
static noinline_for_stack void
tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
__be32 daddr, __be32 saddr, const struct tcphdr *th)
{
struct md5_ctx ctx;
md5_init(&ctx);
tcp_v4_md5_hash_headers(&ctx, daddr, saddr, th, th->doff << 2);
tcp_md5_hash_key(&ctx, key);
md5_final(&ctx, md5_hash);
}
noinline_for_stack void
tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
const struct sock *sk, const struct sk_buff *skb)
{
const struct tcphdr *th = tcp_hdr(skb);
__be32 saddr, daddr;
struct md5_ctx ctx;
if (sk) { /* valid for establish/request sockets */
saddr = sk->sk_rcv_saddr;
daddr = sk->sk_daddr;
} else {
const struct iphdr *iph = ip_hdr(skb);
saddr = iph->saddr;
daddr = iph->daddr;
}
md5_init(&ctx);
tcp_v4_md5_hash_headers(&ctx, daddr, saddr, th, skb->len);
tcp_md5_hash_skb_data(&ctx, skb, th->doff << 2);
tcp_md5_hash_key(&ctx, key);
md5_final(&ctx, md5_hash);
}
EXPORT_IPV6_MOD(tcp_v4_md5_hash_skb);
#endif
static void tcp_v4_init_req(struct request_sock *req,
const struct sock *sk_listener,
struct sk_buff *skb)
{
struct inet_request_sock *ireq = inet_rsk(req);
struct net *net = sock_net(sk_listener);
sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
}
static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
struct sk_buff *skb,
struct flowi *fl,
struct request_sock *req,
u32 tw_isn)
{
tcp_v4_init_req(req, sk, skb);
if (security_inet_conn_request(sk, skb, req))
return NULL;
return inet_csk_route_req(sk, &fl->u.ip4, req);
}
struct request_sock_ops tcp_request_sock_ops __read_mostly = {
.family = PF_INET,
.obj_size = sizeof(struct tcp_request_sock),
.send_ack = tcp_v4_reqsk_send_ack,
.destructor = tcp_v4_reqsk_destructor,
.send_reset = tcp_v4_send_reset,
};
const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
.mss_clamp = TCP_MSS_DEFAULT,
#ifdef CONFIG_TCP_MD5SIG
.req_md5_lookup = tcp_v4_md5_lookup,
.calc_md5_hash = tcp_v4_md5_hash_skb,
#endif
#ifdef CONFIG_TCP_AO
.ao_lookup = tcp_v4_ao_lookup_rsk,
.ao_calc_key = tcp_v4_ao_calc_key_rsk,
.ao_synack_hash = tcp_v4_ao_synack_hash,
#endif
#ifdef CONFIG_SYN_COOKIES
.cookie_init_seq = cookie_v4_init_sequence,
#endif
.route_req = tcp_v4_route_req,
.init_seq = tcp_v4_init_seq,
.init_ts_off = tcp_v4_init_ts_off,
.send_synack = tcp_v4_send_synack,
};
int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
{
/* Never answer to SYNs send to broadcast or multicast */
if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
goto drop;
return tcp_conn_request(&tcp_request_sock_ops,
&tcp_request_sock_ipv4_ops, sk, skb);
drop:
tcp_listendrop(sk);
return 0;
}
EXPORT_IPV6_MOD(tcp_v4_conn_request);
/*
* The three way handshake has completed - we got a valid synack -
* now create the new socket.
*/
struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
struct request_sock *req,
struct dst_entry *dst,
struct request_sock *req_unhash,
bool *own_req)
{
struct inet_request_sock *ireq;
bool found_dup_sk = false;
struct inet_sock *newinet;
struct tcp_sock *newtp;
struct sock *newsk;
#ifdef CONFIG_TCP_MD5SIG
const union tcp_md5_addr *addr;
struct tcp_md5sig_key *key;
int l3index;
#endif
struct ip_options_rcu *inet_opt;
if (sk_acceptq_is_full(sk))
goto exit_overflow;
newsk = tcp_create_openreq_child(sk, req, skb);
if (!newsk)
goto exit_nonewsk;
newsk->sk_gso_type = SKB_GSO_TCPV4;
inet_sk_rx_dst_set(newsk, skb);
newtp = tcp_sk(newsk);
newinet = inet_sk(newsk);
ireq = inet_rsk(req);
inet_opt = rcu_dereference(ireq->ireq_opt);
RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
newinet->mc_index = inet_iif(skb);
newinet->mc_ttl = ip_hdr(skb)->ttl;
newinet->rcv_tos = ip_hdr(skb)->tos;
inet_csk(newsk)->icsk_ext_hdr_len = 0;
if (inet_opt)
inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
atomic_set(&newinet->inet_id, get_random_u16());
/* Set ToS of the new socket based upon the value of incoming SYN.
* ECT bits are set later in tcp_init_transfer().
*/
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
if (!dst) {
dst = inet_csk_route_child_sock(sk, newsk, req);
if (!dst)
goto put_and_exit;
} else {
/* syncookie case : see end of cookie_v4_check() */
}
sk_setup_caps(newsk, dst);
tcp_ca_openreq_child(newsk, dst);
tcp_sync_mss(newsk, dst_mtu(dst));
newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
tcp_initialize_rcv_mss(newsk);
#ifdef CONFIG_TCP_MD5SIG
l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
/* Copy over the MD5 key from the original socket */
addr = (union tcp_md5_addr *)&newinet->inet_daddr;
key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
if (key && !tcp_rsk_used_ao(req)) {
if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
goto put_and_exit;
sk_gso_disable(newsk);
}
#endif
#ifdef CONFIG_TCP_AO
if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
goto put_and_exit; /* OOM, release back memory */
#endif
if (__inet_inherit_port(sk, newsk) < 0)
goto put_and_exit;
*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
&found_dup_sk);
if (likely(*own_req)) {
tcp_move_syn(newtp, req);
ireq->ireq_opt = NULL;
} else {
newinet->inet_opt = NULL;
if (!req_unhash && found_dup_sk) {
/* This code path should only be executed in the
* syncookie case only
*/
bh_unlock_sock(newsk);
sock_put(newsk);
newsk = NULL;
}
}
return newsk;
exit_overflow:
NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
exit_nonewsk:
dst_release(dst);
exit:
tcp_listendrop(sk);
return NULL;
put_and_exit:
newinet->inet_opt = NULL;
inet_csk_prepare_forced_close(newsk);
tcp_done(newsk);
goto exit;
}
EXPORT_IPV6_MOD(tcp_v4_syn_recv_sock);
static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
{
#ifdef CONFIG_SYN_COOKIES
const struct tcphdr *th = tcp_hdr(skb);
if (!th->syn)
sk = cookie_v4_check(sk, skb);
#endif
return sk;
}
u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
struct tcphdr *th, u32 *cookie)
{
u16 mss = 0;
#ifdef CONFIG_SYN_COOKIES
mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
&tcp_request_sock_ipv4_ops, sk, th);
if (mss) {
*cookie = __cookie_v4_init_sequence(iph, th, &mss);
tcp_synq_overflow(sk);
}
#endif
return mss;
}
INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
u32));
/* The socket must have it's spinlock held when we get
* here, unless it is a TCP_LISTEN socket.
*
* We have a potential double-lock case here, so even when
* doing backlog processing we use the BH locking scheme.
* This is because we cannot sleep with the original spinlock
* held.
*/
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
enum skb_drop_reason reason;
struct sock *rsk;
reason = psp_sk_rx_policy_check(sk, skb);
if (reason)
goto err_discard;
if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
struct dst_entry *dst;
dst = rcu_dereference_protected(sk->sk_rx_dst,
lockdep_sock_is_held(sk));
sock_rps_save_rxhash(sk, skb);
sk_mark_napi_id(sk, skb);
if (dst) {
if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
!INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
dst, 0)) {
RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
dst_release(dst);
}
}
tcp_rcv_established(sk, skb);
return 0;
}
if (tcp_checksum_complete(skb))
goto csum_err;
if (sk->sk_state == TCP_LISTEN) {
struct sock *nsk = tcp_v4_cookie_check(sk, skb);
if (!nsk)
return 0;
if (nsk != sk) {
reason = tcp_child_process(sk, nsk, skb);
if (reason) {
rsk = nsk;
goto reset;
}
return 0;
}
} else
sock_rps_save_rxhash(sk, skb);
reason = tcp_rcv_state_process(sk, skb);
if (reason) {
rsk = sk;
goto reset;
}
return 0;
reset:
tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
discard:
sk_skb_reason_drop(sk, skb, reason);
/* Be careful here. If this function gets more complicated and
* gcc suffers from register pressure on the x86, sk (in %ebx)
* might be destroyed here. This current version compiles correctly,
* but you have been warned.
*/
return 0;
csum_err:
reason = SKB_DROP_REASON_TCP_CSUM;
trace_tcp_bad_csum(skb);
TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
err_discard:
TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
goto discard;
}
EXPORT_SYMBOL(tcp_v4_do_rcv);
int tcp_v4_early_demux(struct sk_buff *skb)
{
struct net *net = dev_net_rcu(skb->dev);
const struct iphdr *iph;
const struct tcphdr *th;
struct sock *sk;
if (skb->pkt_type != PACKET_HOST)
return 0;
if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
return 0;
iph = ip_hdr(skb);
th = tcp_hdr(skb);
if (th->doff < sizeof(struct tcphdr) / 4)
return 0;
sk = __inet_lookup_established(net, iph->saddr, th->source,
iph->daddr, ntohs(th->dest),
skb->skb_iif, inet_sdif(skb));
if (sk) {
skb->sk = sk;
skb->destructor = sock_edemux;
if (sk_fullsock(sk)) {
struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
if (dst)
dst = dst_check(dst, 0);
if (dst &&
sk->sk_rx_dst_ifindex == skb->skb_iif)
skb_dst_set_noref(skb, dst);
}
}
return 0;
}
bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
enum skb_drop_reason *reason)
{
u32 tail_gso_size, tail_gso_segs;
struct skb_shared_info *shinfo;
const struct tcphdr *th;
struct tcphdr *thtail;
struct sk_buff *tail;
unsigned int hdrlen;
bool fragstolen;
u32 gso_segs;
u32 gso_size;
u64 limit;
int delta;
int err;
/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
* we can fix skb->truesize to its real value to avoid future drops.
* This is valid because skb is not yet charged to the socket.
* It has been noticed pure SACK packets were sometimes dropped
* (if cooked by drivers without copybreak feature).
*/
skb_condense(skb);
tcp_cleanup_skb(skb);
if (unlikely(tcp_checksum_complete(skb))) {
bh_unlock_sock(sk);
trace_tcp_bad_csum(skb);
*reason = SKB_DROP_REASON_TCP_CSUM;
__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
return true;
}
/* Attempt coalescing to last skb in backlog, even if we are
* above the limits.
* This is okay because skb capacity is limited to MAX_SKB_FRAGS.
*/
th = (const struct tcphdr *)skb->data;
hdrlen = th->doff * 4;
tail = sk->sk_backlog.tail;
if (!tail)
goto no_coalesce;
thtail = (struct tcphdr *)tail->data;
if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
((TCP_SKB_CB(tail)->tcp_flags |
TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
!((TCP_SKB_CB(tail)->tcp_flags &
TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
((TCP_SKB_CB(tail)->tcp_flags ^
TCP_SKB_CB(skb)->tcp_flags) &
(TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)) ||
!tcp_skb_can_collapse_rx(tail, skb) ||
thtail->doff != th->doff ||
memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)) ||
/* prior to PSP Rx policy check, retain exact PSP metadata */
psp_skb_coalesce_diff(tail, skb))
goto no_coalesce;
__skb_pull(skb, hdrlen);
shinfo = skb_shinfo(skb);
gso_size = shinfo->gso_size ?: skb->len;
gso_segs = shinfo->gso_segs ?: 1;
shinfo = skb_shinfo(tail);
tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
tail_gso_segs = shinfo->gso_segs ?: 1;
if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
thtail->window = th->window;
}
/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
* thtail->fin, so that the fast path in tcp_rcv_established()
* is not entered if we append a packet with a FIN.
* SYN, RST, URG are not present.
* ACK is set on both packets.
* PSH : we do not really care in TCP stack,
* at least for 'GRO' packets.
*/
thtail->fin |= th->fin;
TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
if (TCP_SKB_CB(skb)->has_rxtstamp) {
TCP_SKB_CB(tail)->has_rxtstamp = true;
tail->tstamp = skb->tstamp;
skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
}
/* Not as strict as GRO. We only need to carry mss max value */
shinfo->gso_size = max(gso_size, tail_gso_size);
shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
sk->sk_backlog.len += delta;
__NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPBACKLOGCOALESCE);
kfree_skb_partial(skb, fragstolen);
return false;
}
__skb_push(skb, hdrlen);
no_coalesce:
/* sk->sk_backlog.len is reset only at the end of __release_sock().
* Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
* sk_rcvbuf in normal conditions.
*/
limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
/* Only socket owner can try to collapse/prune rx queues
* to reduce memory overhead, so add a little headroom here.
* Few sockets backlog are possibly concurrently non empty.
*/
limit += 64 * 1024;
limit = min_t(u64, limit, UINT_MAX);
err = sk_add_backlog(sk, skb, limit);
if (unlikely(err)) {
bh_unlock_sock(sk);
if (err == -ENOMEM) {
*reason = SKB_DROP_REASON_PFMEMALLOC;
__NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
} else {
*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
}
return true;
}
return false;
}
EXPORT_IPV6_MOD(tcp_add_backlog);
int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason)
{
struct tcphdr *th = (struct tcphdr *)skb->data;
return sk_filter_trim_cap(sk, skb, th->doff * 4, reason);
}
EXPORT_IPV6_MOD(tcp_filter);
static void tcp_v4_restore_cb(struct sk_buff *skb)
{
memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
sizeof(struct inet_skb_parm));
}
static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
const struct tcphdr *th)
{
/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
* barrier() makes sure compiler wont play fool^Waliasing games.
*/
memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
sizeof(struct inet_skb_parm));
barrier();
TCP_SKB_CB(skb)->seq = ntohl(th->seq);
TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
skb->len - th->doff * 4);
TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
TCP_SKB_CB(skb)->tcp_flags = tcp_flags_ntohs(th);
TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
TCP_SKB_CB(skb)->sacked = 0;
TCP_SKB_CB(skb)->has_rxtstamp =
skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
}
/*
* From tcp_input.c
*/
int tcp_v4_rcv(struct sk_buff *skb)
{
struct net *net = dev_net_rcu(skb->dev);
enum skb_drop_reason drop_reason;
enum tcp_tw_status tw_status;
int sdif = inet_sdif(skb);
int dif = inet_iif(skb);
const struct iphdr *iph;
const struct tcphdr *th;
struct sock *sk = NULL;
bool refcounted;
int ret;
u32 isn;
drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
if (skb->pkt_type != PACKET_HOST)
goto discard_it;
/* Count it even if it's bad */
__TCP_INC_STATS(net, TCP_MIB_INSEGS);
if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
goto discard_it;
th = (const struct tcphdr *)skb->data;
if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
goto bad_packet;
}
if (!pskb_may_pull(skb, th->doff * 4))
goto discard_it;
/* An explanation is required here, I think.
* Packet length and doff are validated by header prediction,
* provided case of th->doff==0 is eliminated.
* So, we defer the checks. */
if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
goto csum_error;
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
lookup:
sk = __inet_lookup_skb(skb, __tcp_hdrlen(th), th->source,
th->dest, sdif, &refcounted);
if (!sk)
goto no_tcp_socket;
if (sk->sk_state == TCP_TIME_WAIT)
goto do_time_wait;
if (sk->sk_state == TCP_NEW_SYN_RECV) {
struct request_sock *req = inet_reqsk(sk);
bool req_stolen = false;
struct sock *nsk;
sk = req->rsk_listener;
if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
drop_reason = SKB_DROP_REASON_XFRM_POLICY;
else
drop_reason = tcp_inbound_hash(sk, req, skb,
&iph->saddr, &iph->daddr,
AF_INET, dif, sdif);
if (unlikely(drop_reason)) {
sk_drops_skbadd(sk, skb);
reqsk_put(req);
goto discard_it;
}
if (tcp_checksum_complete(skb)) {
reqsk_put(req);
goto csum_error;
}
if (unlikely(sk->sk_state != TCP_LISTEN)) {
nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
if (!nsk) {
inet_csk_reqsk_queue_drop_and_put(sk, req);
goto lookup;
}
sk = nsk;
/* reuseport_migrate_sock() has already held one sk_refcnt
* before returning.
*/
} else {
/* We own a reference on the listener, increase it again
* as we might lose it too soon.
*/
sock_hold(sk);
}
refcounted = true;
nsk = NULL;
if (!tcp_filter(sk, skb, &drop_reason)) {
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
tcp_v4_fill_cb(skb, iph, th);
nsk = tcp_check_req(sk, skb, req, false, &req_stolen,
&drop_reason);
}
if (!nsk) {
reqsk_put(req);
if (req_stolen) {
/* Another cpu got exclusive access to req
* and created a full blown socket.
* Try to feed this packet to this socket
* instead of discarding it.
*/
tcp_v4_restore_cb(skb);
sock_put(sk);
goto lookup;
}
goto discard_and_relse;
}
nf_reset_ct(skb);
if (nsk == sk) {
reqsk_put(req);
tcp_v4_restore_cb(skb);
} else {
drop_reason = tcp_child_process(sk, nsk, skb);
if (drop_reason) {
enum sk_rst_reason rst_reason;
rst_reason = sk_rst_convert_drop_reason(drop_reason);
tcp_v4_send_reset(nsk, skb, rst_reason);
goto discard_and_relse;
}
sock_put(sk);
return 0;
}
}
process:
if (static_branch_unlikely(&ip4_min_ttl)) {
/* min_ttl can be changed concurrently from do_ip_setsockopt() */
if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
drop_reason = SKB_DROP_REASON_TCP_MINTTL;
goto discard_and_relse;
}
}
if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
drop_reason = SKB_DROP_REASON_XFRM_POLICY;
goto discard_and_relse;
}
drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
AF_INET, dif, sdif);
if (drop_reason)
goto discard_and_relse;
nf_reset_ct(skb);
if (tcp_filter(sk, skb, &drop_reason))
goto discard_and_relse;
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
tcp_v4_fill_cb(skb, iph, th);
skb->dev = NULL;
if (sk->sk_state == TCP_LISTEN) {
ret = tcp_v4_do_rcv(sk, skb);
goto put_and_return;
}
sk_incoming_cpu_update(sk);
bh_lock_sock_nested(sk);
tcp_segs_in(tcp_sk(sk), skb);
ret = 0;
if (!sock_owned_by_user(sk)) {
ret = tcp_v4_do_rcv(sk, skb);
} else {
if (tcp_add_backlog(sk, skb, &drop_reason))
goto discard_and_relse;
}
bh_unlock_sock(sk);
put_and_return:
if (refcounted)
sock_put(sk);
return ret;
no_tcp_socket:
drop_reason = SKB_DROP_REASON_NO_SOCKET;
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
goto discard_it;
tcp_v4_fill_cb(skb, iph, th);
if (tcp_checksum_complete(skb)) {
csum_error:
drop_reason = SKB_DROP_REASON_TCP_CSUM;
trace_tcp_bad_csum(skb);
__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
bad_packet:
__TCP_INC_STATS(net, TCP_MIB_INERRS);
} else {
tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
}
discard_it:
SKB_DR_OR(drop_reason, NOT_SPECIFIED);
/* Discard frame. */
sk_skb_reason_drop(sk, skb, drop_reason);
return 0;
discard_and_relse:
sk_drops_skbadd(sk, skb);
if (refcounted)
sock_put(sk);
goto discard_it;
do_time_wait:
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
drop_reason = SKB_DROP_REASON_XFRM_POLICY;
inet_twsk_put(inet_twsk(sk));
goto discard_it;
}
tcp_v4_fill_cb(skb, iph, th);
if (tcp_checksum_complete(skb)) {
inet_twsk_put(inet_twsk(sk));
goto csum_error;
}
tw_status = tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn,
&drop_reason);
switch (tw_status) {
case TCP_TW_SYN: {
struct sock *sk2 = inet_lookup_listener(net, skb, __tcp_hdrlen(th),
iph->saddr, th->source,
iph->daddr, th->dest,
inet_iif(skb),
sdif);
if (sk2) {
inet_twsk_deschedule_put(inet_twsk(sk));
sk = sk2;
tcp_v4_restore_cb(skb);
refcounted = false;
__this_cpu_write(tcp_tw_isn, isn);
goto process;
}
drop_reason = psp_twsk_rx_policy_check(inet_twsk(sk), skb);
if (drop_reason)
break;
}
/* to ACK */
fallthrough;
case TCP_TW_ACK:
case TCP_TW_ACK_OOW:
tcp_v4_timewait_ack(sk, skb, tw_status);
break;
case TCP_TW_RST:
tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
inet_twsk_deschedule_put(inet_twsk(sk));
goto discard_it;
case TCP_TW_SUCCESS:;
}
goto discard_it;
}
static struct timewait_sock_ops tcp_timewait_sock_ops = {
.twsk_obj_size = sizeof(struct tcp_timewait_sock),
};
void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
if (dst && dst_hold_safe(dst)) {
rcu_assign_pointer(sk->sk_rx_dst, dst);
sk->sk_rx_dst_ifindex = skb->skb_iif;
}
}
EXPORT_IPV6_MOD(inet_sk_rx_dst_set);
const struct inet_connection_sock_af_ops ipv4_specific = {
.queue_xmit = ip_queue_xmit,
.send_check = tcp_v4_send_check,
.rebuild_header = inet_sk_rebuild_header,
.sk_rx_dst_set = inet_sk_rx_dst_set,
.conn_request = tcp_v4_conn_request,
.syn_recv_sock = tcp_v4_syn_recv_sock,
.net_header_len = sizeof(struct iphdr),
.setsockopt = ip_setsockopt,
.getsockopt = ip_getsockopt,
.mtu_reduced = tcp_v4_mtu_reduced,
};
EXPORT_IPV6_MOD(ipv4_specific);
#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
#ifdef CONFIG_TCP_MD5SIG
.md5_lookup = tcp_v4_md5_lookup,
.calc_md5_hash = tcp_v4_md5_hash_skb,
.md5_parse = tcp_v4_parse_md5_keys,
#endif
#ifdef CONFIG_TCP_AO
.ao_lookup = tcp_v4_ao_lookup,
.calc_ao_hash = tcp_v4_ao_hash_skb,
.ao_parse = tcp_v4_parse_ao,
.ao_calc_key_sk = tcp_v4_ao_calc_key_sk,
#endif
};
static void tcp4_destruct_sock(struct sock *sk)
{
tcp_md5_destruct_sock(sk);
tcp_ao_destroy_sock(sk, false);
inet_sock_destruct(sk);
}
#endif
/* NOTE: A lot of things set to zero explicitly by call to
* sk_alloc() so need not be done here.
*/
static int tcp_v4_init_sock(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
tcp_init_sock(sk);
icsk->icsk_af_ops = &ipv4_specific;
#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
sk->sk_destruct = tcp4_destruct_sock;
#endif
return 0;
}
static void tcp_release_user_frags(struct sock *sk)
{
#ifdef CONFIG_PAGE_POOL
unsigned long index;
void *netmem;
xa_for_each(&sk->sk_user_frags, index, netmem)
WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem));
#endif
}
void tcp_v4_destroy_sock(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
tcp_release_user_frags(sk);
xa_destroy(&sk->sk_user_frags);
trace_tcp_destroy_sock(sk);
tcp_clear_xmit_timers(sk);
tcp_cleanup_congestion_control(sk);
tcp_cleanup_ulp(sk);
/* Cleanup up the write buffer. */
tcp_write_queue_purge(sk);
/* Check if we want to disable active TFO */
tcp_fastopen_active_disable_ofo_check(sk);
/* Cleans up our, hopefully empty, out_of_order_queue. */
skb_rbtree_purge(&tp->out_of_order_queue);
/* Clean up a referenced TCP bind bucket. */
if (inet_csk(sk)->icsk_bind_hash)
inet_put_port(sk);
BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
/* If socket is aborted during connect operation */
tcp_free_fastopen_req(tp);
tcp_fastopen_destroy_cipher(sk);
tcp_saved_syn_free(tp);
sk_sockets_allocated_dec(sk);
}
EXPORT_IPV6_MOD(tcp_v4_destroy_sock);
#ifdef CONFIG_PROC_FS
/* Proc filesystem TCP sock list dumping. */
static unsigned short seq_file_family(const struct seq_file *seq);
static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
{
unsigned short family = seq_file_family(seq);
/* AF_UNSPEC is used as a match all */
return ((family == AF_UNSPEC || family == sk->sk_family) &&
net_eq(sock_net(sk), seq_file_net(seq)));
}
/* Find a non empty bucket (starting from st->bucket)
* and return the first sk from it.
*/
static void *listening_get_first(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
st->offset = 0;
for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
struct inet_listen_hashbucket *ilb2;
struct hlist_nulls_node *node;
struct sock *sk;
ilb2 = &hinfo->lhash2[st->bucket];
if (hlist_nulls_empty(&ilb2->nulls_head))
continue;
spin_lock(&ilb2->lock);
sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
if (seq_sk_match(seq, sk))
return sk;
}
spin_unlock(&ilb2->lock);
}
return NULL;
}
/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
* If "cur" is the last one in the st->bucket,
* call listening_get_first() to return the first sk of the next
* non empty bucket.
*/
static void *listening_get_next(struct seq_file *seq, void *cur)
{
struct tcp_iter_state *st = seq->private;
struct inet_listen_hashbucket *ilb2;
struct hlist_nulls_node *node;
struct inet_hashinfo *hinfo;
struct sock *sk = cur;
++st->num;
++st->offset;
sk = sk_nulls_next(sk);
sk_nulls_for_each_from(sk, node) {
if (seq_sk_match(seq, sk))
return sk;
}
hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
ilb2 = &hinfo->lhash2[st->bucket];
spin_unlock(&ilb2->lock);
++st->bucket;
return listening_get_first(seq);
}
static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
{
struct tcp_iter_state *st = seq->private;
void *rc;
st->bucket = 0;
st->offset = 0;
rc = listening_get_first(seq);
while (rc && *pos) {
rc = listening_get_next(seq, rc);
--*pos;
}
return rc;
}
static inline bool empty_bucket(struct inet_hashinfo *hinfo,
const struct tcp_iter_state *st)
{
return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
}
/*
* Get first established socket starting from bucket given in st->bucket.
* If st->bucket is zero, the very first socket in the hash is returned.
*/
static void *established_get_first(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
st->offset = 0;
for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
struct sock *sk;
struct hlist_nulls_node *node;
spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
cond_resched();
/* Lockless fast path for the common case of empty buckets */
if (empty_bucket(hinfo, st))
continue;
spin_lock_bh(lock);
sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
if (seq_sk_match(seq, sk))
return sk;
}
spin_unlock_bh(lock);
}
return NULL;
}
static void *established_get_next(struct seq_file *seq, void *cur)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
struct hlist_nulls_node *node;
struct sock *sk = cur;
++st->num;
++st->offset;
sk = sk_nulls_next(sk);
sk_nulls_for_each_from(sk, node) {
if (seq_sk_match(seq, sk))
return sk;
}
spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
++st->bucket;
return established_get_first(seq);
}
static void *established_get_idx(struct seq_file *seq, loff_t pos)
{
struct tcp_iter_state *st = seq->private;
void *rc;
st->bucket = 0;
rc = established_get_first(seq);
while (rc && pos) {
rc = established_get_next(seq, rc);
--pos;
}
return rc;
}
static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
{
void *rc;
struct tcp_iter_state *st = seq->private;
st->state = TCP_SEQ_STATE_LISTENING;
rc = listening_get_idx(seq, &pos);
if (!rc) {
st->state = TCP_SEQ_STATE_ESTABLISHED;
rc = established_get_idx(seq, pos);
}
return rc;
}
static void *tcp_seek_last_pos(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
int bucket = st->bucket;
int offset = st->offset;
int orig_num = st->num;
void *rc = NULL;
switch (st->state) {
case TCP_SEQ_STATE_LISTENING:
if (st->bucket > hinfo->lhash2_mask)
break;
rc = listening_get_first(seq);
while (offset-- && rc && bucket == st->bucket)
rc = listening_get_next(seq, rc);
if (rc)
break;
st->bucket = 0;
st->state = TCP_SEQ_STATE_ESTABLISHED;
fallthrough;
case TCP_SEQ_STATE_ESTABLISHED:
if (st->bucket > hinfo->ehash_mask)
break;
rc = established_get_first(seq);
while (offset-- && rc && bucket == st->bucket)
rc = established_get_next(seq, rc);
}
st->num = orig_num;
return rc;
}
void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
{
struct tcp_iter_state *st = seq->private;
void *rc;
if (*pos && *pos == st->last_pos) {
rc = tcp_seek_last_pos(seq);
if (rc)
goto out;
}
st->state = TCP_SEQ_STATE_LISTENING;
st->num = 0;
st->bucket = 0;
st->offset = 0;
rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
out:
st->last_pos = *pos;
return rc;
}
EXPORT_IPV6_MOD(tcp_seq_start);
void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct tcp_iter_state *st = seq->private;
void *rc = NULL;
if (v == SEQ_START_TOKEN) {
rc = tcp_get_idx(seq, 0);
goto out;
}
switch (st->state) {
case TCP_SEQ_STATE_LISTENING:
rc = listening_get_next(seq, v);
if (!rc) {
st->state = TCP_SEQ_STATE_ESTABLISHED;
st->bucket = 0;
st->offset = 0;
rc = established_get_first(seq);
}
break;
case TCP_SEQ_STATE_ESTABLISHED:
rc = established_get_next(seq, v);
break;
}
out:
++*pos;
st->last_pos = *pos;
return rc;
}
EXPORT_IPV6_MOD(tcp_seq_next);
void tcp_seq_stop(struct seq_file *seq, void *v)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
switch (st->state) {
case TCP_SEQ_STATE_LISTENING:
if (v != SEQ_START_TOKEN)
spin_unlock(&hinfo->lhash2[st->bucket].lock);
break;
case TCP_SEQ_STATE_ESTABLISHED:
if (v)
spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
break;
}
}
EXPORT_IPV6_MOD(tcp_seq_stop);
static void get_openreq4(const struct request_sock *req,
struct seq_file *f, int i)
{
const struct inet_request_sock *ireq = inet_rsk(req);
long delta = req->rsk_timer.expires - jiffies;
seq_printf(f, "%4d: %08X:%04X %08X:%04X"
" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
i,
ireq->ir_loc_addr,
ireq->ir_num,
ireq->ir_rmt_addr,
ntohs(ireq->ir_rmt_port),
TCP_SYN_RECV,
0, 0, /* could print option size, but that is af dependent. */
1, /* timers active (only the expire timer) */
jiffies_delta_to_clock_t(delta),
req->num_timeout,
from_kuid_munged(seq_user_ns(f),
sk_uid(req->rsk_listener)),
0, /* non standard timer */
0, /* open_requests have no inode */
0,
req);
}
static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
{
int timer_active;
unsigned long timer_expires;
const struct tcp_sock *tp = tcp_sk(sk);
const struct inet_connection_sock *icsk = inet_csk(sk);
const struct inet_sock *inet = inet_sk(sk);
const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
__be32 dest = inet->inet_daddr;
__be32 src = inet->inet_rcv_saddr;
__u16 destp = ntohs(inet->inet_dport);
__u16 srcp = ntohs(inet->inet_sport);
u8 icsk_pending;
int rx_queue;
int state;
icsk_pending = smp_load_acquire(&icsk->icsk_pending);
if (icsk_pending == ICSK_TIME_RETRANS ||
icsk_pending == ICSK_TIME_REO_TIMEOUT ||
icsk_pending == ICSK_TIME_LOSS_PROBE) {
timer_active = 1;
timer_expires = icsk_timeout(icsk);
} else if (icsk_pending == ICSK_TIME_PROBE0) {
timer_active = 4;
timer_expires = icsk_timeout(icsk);
} else if (timer_pending(&sk->sk_timer)) {
timer_active = 2;
timer_expires = sk->sk_timer.expires;
} else {
timer_active = 0;
timer_expires = jiffies;
}
state = inet_sk_state_load(sk);
if (state == TCP_LISTEN)
rx_queue = READ_ONCE(sk->sk_ack_backlog);
else
/* Because we don't lock the socket,
* we might find a transient negative value.
*/
rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
READ_ONCE(tp->copied_seq), 0);
seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
i, src, srcp, dest, destp, state,
READ_ONCE(tp->write_seq) - tp->snd_una,
rx_queue,
timer_active,
jiffies_delta_to_clock_t(timer_expires - jiffies),
READ_ONCE(icsk->icsk_retransmits),
from_kuid_munged(seq_user_ns(f), sk_uid(sk)),
READ_ONCE(icsk->icsk_probes_out),
sock_i_ino(sk),
refcount_read(&sk->sk_refcnt), sk,
jiffies_to_clock_t(icsk->icsk_rto),
jiffies_to_clock_t(icsk->icsk_ack.ato),
(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
tcp_snd_cwnd(tp),
state == TCP_LISTEN ?
fastopenq->max_qlen :
(tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
}
static void get_timewait4_sock(const struct inet_timewait_sock *tw,
struct seq_file *f, int i)
{
long delta = tw->tw_timer.expires - jiffies;
__be32 dest, src;
__u16 destp, srcp;
dest = tw->tw_daddr;
src = tw->tw_rcv_saddr;
destp = ntohs(tw->tw_dport);
srcp = ntohs(tw->tw_sport);
seq_printf(f, "%4d: %08X:%04X %08X:%04X"
" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0,
3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
refcount_read(&tw->tw_refcnt), tw);
}
#define TMPSZ 150
static int tcp4_seq_show(struct seq_file *seq, void *v)
{
struct tcp_iter_state *st;
struct sock *sk = v;
seq_setwidth(seq, TMPSZ - 1);
if (v == SEQ_START_TOKEN) {
seq_puts(seq, " sl local_address rem_address st tx_queue "
"rx_queue tr tm->when retrnsmt uid timeout "
"inode");
goto out;
}
st = seq->private;
if (sk->sk_state == TCP_TIME_WAIT)
get_timewait4_sock(v, seq, st->num);
else if (sk->sk_state == TCP_NEW_SYN_RECV)
get_openreq4(v, seq, st->num);
else
get_tcp4_sock(v, seq, st->num);
out:
seq_pad(seq, '\n');
return 0;
}
#ifdef CONFIG_BPF_SYSCALL
union bpf_tcp_iter_batch_item {
struct sock *sk;
__u64 cookie;
};
struct bpf_tcp_iter_state {
struct tcp_iter_state state;
unsigned int cur_sk;
unsigned int end_sk;
unsigned int max_sk;
union bpf_tcp_iter_batch_item *batch;
};
struct bpf_iter__tcp {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct sock_common *, sk_common);
uid_t uid __aligned(8);
};
static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
struct sock_common *sk_common, uid_t uid)
{
struct bpf_iter__tcp ctx;
meta->seq_num--; /* skip SEQ_START_TOKEN */
ctx.meta = meta;
ctx.sk_common = sk_common;
ctx.uid = uid;
return bpf_iter_run_prog(prog, &ctx);
}
static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
{
union bpf_tcp_iter_batch_item *item;
unsigned int cur_sk = iter->cur_sk;
__u64 cookie;
/* Remember the cookies of the sockets we haven't seen yet, so we can
* pick up where we left off next time around.
*/
while (cur_sk < iter->end_sk) {
item = &iter->batch[cur_sk++];
cookie = sock_gen_cookie(item->sk);
sock_gen_put(item->sk);
item->cookie = cookie;
}
}
static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
unsigned int new_batch_sz, gfp_t flags)
{
union bpf_tcp_iter_batch_item *new_batch;
new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
flags | __GFP_NOWARN);
if (!new_batch)
return -ENOMEM;
memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk);
kvfree(iter->batch);
iter->batch = new_batch;
iter->max_sk = new_batch_sz;
return 0;
}
static struct sock *bpf_iter_tcp_resume_bucket(struct sock *first_sk,
union bpf_tcp_iter_batch_item *cookies,
int n_cookies)
{
struct hlist_nulls_node *node;
struct sock *sk;
int i;
for (i = 0; i < n_cookies; i++) {
sk = first_sk;
sk_nulls_for_each_from(sk, node)
if (cookies[i].cookie == atomic64_read(&sk->sk_cookie))
return sk;
}
return NULL;
}
static struct sock *bpf_iter_tcp_resume_listening(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
unsigned int find_cookie = iter->cur_sk;
unsigned int end_cookie = iter->end_sk;
int resume_bucket = st->bucket;
struct sock *sk;
if (end_cookie && find_cookie == end_cookie)
++st->bucket;
sk = listening_get_first(seq);
iter->cur_sk = 0;
iter->end_sk = 0;
if (sk && st->bucket == resume_bucket && end_cookie) {
sk = bpf_iter_tcp_resume_bucket(sk, &iter->batch[find_cookie],
end_cookie - find_cookie);
if (!sk) {
spin_unlock(&hinfo->lhash2[st->bucket].lock);
++st->bucket;
sk = listening_get_first(seq);
}
}
return sk;
}
static struct sock *bpf_iter_tcp_resume_established(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
unsigned int find_cookie = iter->cur_sk;
unsigned int end_cookie = iter->end_sk;
int resume_bucket = st->bucket;
struct sock *sk;
if (end_cookie && find_cookie == end_cookie)
++st->bucket;
sk = established_get_first(seq);
iter->cur_sk = 0;
iter->end_sk = 0;
if (sk && st->bucket == resume_bucket && end_cookie) {
sk = bpf_iter_tcp_resume_bucket(sk, &iter->batch[find_cookie],
end_cookie - find_cookie);
if (!sk) {
spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
++st->bucket;
sk = established_get_first(seq);
}
}
return sk;
}
static struct sock *bpf_iter_tcp_resume(struct seq_file *seq)
{
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
struct sock *sk = NULL;
switch (st->state) {
case TCP_SEQ_STATE_LISTENING:
sk = bpf_iter_tcp_resume_listening(seq);
if (sk)
break;
st->bucket = 0;
st->state = TCP_SEQ_STATE_ESTABLISHED;
fallthrough;
case TCP_SEQ_STATE_ESTABLISHED:
sk = bpf_iter_tcp_resume_established(seq);
break;
}
return sk;
}
static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
struct sock **start_sk)
{
struct bpf_tcp_iter_state *iter = seq->private;
struct hlist_nulls_node *node;
unsigned int expected = 1;
struct sock *sk;
sock_hold(*start_sk);
iter->batch[iter->end_sk++].sk = *start_sk;
sk = sk_nulls_next(*start_sk);
*start_sk = NULL;
sk_nulls_for_each_from(sk, node) {
if (seq_sk_match(seq, sk)) {
if (iter->end_sk < iter->max_sk) {
sock_hold(sk);
iter->batch[iter->end_sk++].sk = sk;
} else if (!*start_sk) {
/* Remember where we left off. */
*start_sk = sk;
}
expected++;
}
}
return expected;
}
static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
struct sock **start_sk)
{
struct bpf_tcp_iter_state *iter = seq->private;
struct hlist_nulls_node *node;
unsigned int expected = 1;
struct sock *sk;
sock_hold(*start_sk);
iter->batch[iter->end_sk++].sk = *start_sk;
sk = sk_nulls_next(*start_sk);
*start_sk = NULL;
sk_nulls_for_each_from(sk, node) {
if (seq_sk_match(seq, sk)) {
if (iter->end_sk < iter->max_sk) {
sock_hold(sk);
iter->batch[iter->end_sk++].sk = sk;
} else if (!*start_sk) {
/* Remember where we left off. */
*start_sk = sk;
}
expected++;
}
}
return expected;
}
static unsigned int bpf_iter_fill_batch(struct seq_file *seq,
struct sock **start_sk)
{
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
if (st->state == TCP_SEQ_STATE_LISTENING)
return bpf_iter_tcp_listening_batch(seq, start_sk);
else
return bpf_iter_tcp_established_batch(seq, start_sk);
}
static void bpf_iter_tcp_unlock_bucket(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
if (st->state == TCP_SEQ_STATE_LISTENING)
spin_unlock(&hinfo->lhash2[st->bucket].lock);
else
spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
}
static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
{
struct bpf_tcp_iter_state *iter = seq->private;
unsigned int expected;
struct sock *sk;
int err;
sk = bpf_iter_tcp_resume(seq);
if (!sk)
return NULL; /* Done */
expected = bpf_iter_fill_batch(seq, &sk);
if (likely(iter->end_sk == expected))
goto done;
/* Batch size was too small. */
bpf_iter_tcp_unlock_bucket(seq);
bpf_iter_tcp_put_batch(iter);
err = bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2,
GFP_USER);
if (err)
return ERR_PTR(err);
sk = bpf_iter_tcp_resume(seq);
if (!sk)
return NULL; /* Done */
expected = bpf_iter_fill_batch(seq, &sk);
if (likely(iter->end_sk == expected))
goto done;
/* Batch size was still too small. Hold onto the lock while we try
* again with a larger batch to make sure the current bucket's size
* does not change in the meantime.
*/
err = bpf_iter_tcp_realloc_batch(iter, expected, GFP_NOWAIT);
if (err) {
bpf_iter_tcp_unlock_bucket(seq);
return ERR_PTR(err);
}
expected = bpf_iter_fill_batch(seq, &sk);
WARN_ON_ONCE(iter->end_sk != expected);
done:
bpf_iter_tcp_unlock_bucket(seq);
return iter->batch[0].sk;
}
static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
{
/* bpf iter does not support lseek, so it always
* continue from where it was stop()-ped.
*/
if (*pos)
return bpf_iter_tcp_batch(seq);
return SEQ_START_TOKEN;
}
static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
struct sock *sk;
/* Whenever seq_next() is called, the iter->cur_sk is
* done with seq_show(), so advance to the next sk in
* the batch.
*/
if (iter->cur_sk < iter->end_sk) {
/* Keeping st->num consistent in tcp_iter_state.
* bpf_iter_tcp does not use st->num.
* meta.seq_num is used instead.
*/
st->num++;
sock_gen_put(iter->batch[iter->cur_sk++].sk);
}
if (iter->cur_sk < iter->end_sk)
sk = iter->batch[iter->cur_sk].sk;
else
sk = bpf_iter_tcp_batch(seq);
++*pos;
/* Keeping st->last_pos consistent in tcp_iter_state.
* bpf iter does not do lseek, so st->last_pos always equals to *pos.
*/
st->last_pos = *pos;
return sk;
}
static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
{
struct bpf_iter_meta meta;
struct bpf_prog *prog;
struct sock *sk = v;
uid_t uid;
int ret;
if (v == SEQ_START_TOKEN)
return 0;
if (sk_fullsock(sk))
lock_sock(sk);
if (unlikely(sk_unhashed(sk))) {
ret = SEQ_SKIP;
goto unlock;
}
if (sk->sk_state == TCP_TIME_WAIT) {
uid = 0;
} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
const struct request_sock *req = v;
uid = from_kuid_munged(seq_user_ns(seq),
sk_uid(req->rsk_listener));
} else {
uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk));
}
meta.seq = seq;
prog = bpf_iter_get_info(&meta, false);
ret = tcp_prog_seq_show(prog, &meta, v, uid);
unlock:
if (sk_fullsock(sk))
release_sock(sk);
return ret;
}
static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
{
struct bpf_tcp_iter_state *iter = seq->private;
struct bpf_iter_meta meta;
struct bpf_prog *prog;
if (!v) {
meta.seq = seq;
prog = bpf_iter_get_info(&meta, true);
if (prog)
(void)tcp_prog_seq_show(prog, &meta, v, 0);
}
if (iter->cur_sk < iter->end_sk)
bpf_iter_tcp_put_batch(iter);
}
static const struct seq_operations bpf_iter_tcp_seq_ops = {
.show = bpf_iter_tcp_seq_show,
.start = bpf_iter_tcp_seq_start,
.next = bpf_iter_tcp_seq_next,
.stop = bpf_iter_tcp_seq_stop,
};
#endif
static unsigned short seq_file_family(const struct seq_file *seq)
{
const struct tcp_seq_afinfo *afinfo;
#ifdef CONFIG_BPF_SYSCALL
/* Iterated from bpf_iter. Let the bpf prog to filter instead. */
if (seq->op == &bpf_iter_tcp_seq_ops)
return AF_UNSPEC;
#endif
/* Iterated from proc fs */
afinfo = pde_data(file_inode(seq->file));
return afinfo->family;
}
static const struct seq_operations tcp4_seq_ops = {
.show = tcp4_seq_show,
.start = tcp_seq_start,
.next = tcp_seq_next,
.stop = tcp_seq_stop,
};
static struct tcp_seq_afinfo tcp4_seq_afinfo = {
.family = AF_INET,
};
static int __net_init tcp4_proc_init_net(struct net *net)
{
if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
return -ENOMEM;
return 0;
}
static void __net_exit tcp4_proc_exit_net(struct net *net)
{
remove_proc_entry("tcp", net->proc_net);
}
static struct pernet_operations tcp4_net_ops = {
.init = tcp4_proc_init_net,
.exit = tcp4_proc_exit_net,
};
int __init tcp4_proc_init(void)
{
return register_pernet_subsys(&tcp4_net_ops);
}
void tcp4_proc_exit(void)
{
unregister_pernet_subsys(&tcp4_net_ops);
}
#endif /* CONFIG_PROC_FS */
/* @wake is one when sk_stream_write_space() calls us.
* This sends EPOLLOUT only if notsent_bytes is half the limit.
* This mimics the strategy used in sock_def_write_space().
*/
bool tcp_stream_memory_free(const struct sock *sk, int wake)
{
const struct tcp_sock *tp = tcp_sk(sk);
u32 notsent_bytes = READ_ONCE(tp->write_seq) -
READ_ONCE(tp->snd_nxt);
return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
}
EXPORT_SYMBOL(tcp_stream_memory_free);
struct proto tcp_prot = {
.name = "TCP",
.owner = THIS_MODULE,
.close = tcp_close,
.pre_connect = tcp_v4_pre_connect,
.connect = tcp_v4_connect,
.disconnect = tcp_disconnect,
.accept = inet_csk_accept,
.ioctl = tcp_ioctl,
.init = tcp_v4_init_sock,
.destroy = tcp_v4_destroy_sock,
.shutdown = tcp_shutdown,
.setsockopt = tcp_setsockopt,
.getsockopt = tcp_getsockopt,
.bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt,
.keepalive = tcp_set_keepalive,
.recvmsg = tcp_recvmsg,
.sendmsg = tcp_sendmsg,
.splice_eof = tcp_splice_eof,
.backlog_rcv = tcp_v4_do_rcv,
.release_cb = tcp_release_cb,
.hash = inet_hash,
.unhash = inet_unhash,
.get_port = inet_csk_get_port,
.put_port = inet_put_port,
#ifdef CONFIG_BPF_SYSCALL
.psock_update_sk_prot = tcp_bpf_update_proto,
#endif
.enter_memory_pressure = tcp_enter_memory_pressure,
.leave_memory_pressure = tcp_leave_memory_pressure,
.stream_memory_free = tcp_stream_memory_free,
.sockets_allocated = &tcp_sockets_allocated,
.memory_allocated = &net_aligned_data.tcp_memory_allocated,
.per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
.memory_pressure = &tcp_memory_pressure,
.sysctl_mem = sysctl_tcp_mem,
.sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
.sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
.max_header = MAX_TCP_HEADER,
.obj_size = sizeof(struct tcp_sock),
.slab_flags = SLAB_TYPESAFE_BY_RCU,
.twsk_prot = &tcp_timewait_sock_ops,
.rsk_prot = &tcp_request_sock_ops,
.h.hashinfo = NULL,
.no_autobind = true,
.diag_destroy = tcp_abort,
};
EXPORT_SYMBOL(tcp_prot);
static void __net_exit tcp_sk_exit(struct net *net)
{
if (net->ipv4.tcp_congestion_control)
bpf_module_put(net->ipv4.tcp_congestion_control,
net->ipv4.tcp_congestion_control->owner);
}
static void __net_init tcp_set_hashinfo(struct net *net)
{
struct inet_hashinfo *hinfo;
unsigned int ehash_entries;
struct net *old_net;
if (net_eq(net, &init_net))
goto fallback;
old_net = current->nsproxy->net_ns;
ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
if (!ehash_entries)
goto fallback;
ehash_entries = roundup_pow_of_two(ehash_entries);
hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
if (!hinfo) {
pr_warn("Failed to allocate TCP ehash (entries: %u) "
"for a netns, fallback to the global one\n",
ehash_entries);
fallback:
hinfo = &tcp_hashinfo;
ehash_entries = tcp_hashinfo.ehash_mask + 1;
}
net->ipv4.tcp_death_row.hashinfo = hinfo;
net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
}
static int __net_init tcp_sk_init(struct net *net)
{
net->ipv4.sysctl_tcp_ecn = TCP_ECN_IN_ECN_OUT_NOECN;
net->ipv4.sysctl_tcp_ecn_option = TCP_ACCECN_OPTION_FULL;
net->ipv4.sysctl_tcp_ecn_option_beacon = TCP_ACCECN_OPTION_BEACON;
net->ipv4.sysctl_tcp_ecn_fallback = 1;
net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
net->ipv4.sysctl_tcp_syncookies = 1;
net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
net->ipv4.sysctl_tcp_orphan_retries = 0;
net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
net->ipv4.sysctl_tcp_tw_reuse = 2;
net->ipv4.sysctl_tcp_tw_reuse_delay = 1 * MSEC_PER_SEC;
net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
tcp_set_hashinfo(net);
net->ipv4.sysctl_tcp_sack = 1;
net->ipv4.sysctl_tcp_window_scaling = 1;
net->ipv4.sysctl_tcp_timestamps = 1;
net->ipv4.sysctl_tcp_early_retrans = 3;
net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
net->ipv4.sysctl_tcp_retrans_collapse = 1;
net->ipv4.sysctl_tcp_max_reordering = 300;
net->ipv4.sysctl_tcp_dsack = 1;
net->ipv4.sysctl_tcp_app_win = 31;
net->ipv4.sysctl_tcp_adv_win_scale = 1;
net->ipv4.sysctl_tcp_frto = 2;
net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
net->ipv4.sysctl_tcp_rcvbuf_low_rtt = USEC_PER_MSEC;
/* This limits the percentage of the congestion window which we
* will allow a single TSO frame to consume. Building TSO frames
* which are too large can cause TCP streams to be bursty.
*/
net->ipv4.sysctl_tcp_tso_win_divisor = 3;
/* Default TSQ limit of 4 MB */
net->ipv4.sysctl_tcp_limit_output_bytes = 4 << 20;
/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
net->ipv4.sysctl_tcp_min_tso_segs = 2;
net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */
net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
net->ipv4.sysctl_tcp_autocorking = 1;
net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
if (net != &init_net) {
memcpy(net->ipv4.sysctl_tcp_rmem,
init_net.ipv4.sysctl_tcp_rmem,
sizeof(init_net.ipv4.sysctl_tcp_rmem));
memcpy(net->ipv4.sysctl_tcp_wmem,
init_net.ipv4.sysctl_tcp_wmem,
sizeof(init_net.ipv4.sysctl_tcp_wmem));
}
net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
net->ipv4.sysctl_tcp_comp_sack_slack_ns = 10 * NSEC_PER_USEC;
net->ipv4.sysctl_tcp_comp_sack_nr = 44;
net->ipv4.sysctl_tcp_comp_sack_rtt_percent = 33;
net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
atomic_set(&net->ipv4.tfo_active_disable_times, 0);
/* Set default values for PLB */
net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
/* Default congestion threshold for PLB to mark a round is 50% */
net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
/* Reno is always built in */
if (!net_eq(net, &init_net) &&
bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
init_net.ipv4.tcp_congestion_control->owner))
net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
else
net->ipv4.tcp_congestion_control = &tcp_reno;
net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
net->ipv4.sysctl_tcp_shrink_window = 0;
net->ipv4.sysctl_tcp_pingpong_thresh = 1;
net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
net->ipv4.sysctl_tcp_rto_max_ms = TCP_RTO_MAX_SEC * MSEC_PER_SEC;
return 0;
}
static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
{
struct net *net;
/* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work
* and failed setup_net error unwinding path are serialized.
*
* tcp_twsk_purge() handles twsk in any dead netns, not just those in
* net_exit_list, the thread that dismantles a particular twsk must
* do so without other thread progressing to refcount_dec_and_test() of
* tcp_death_row.tw_refcount.
*/
mutex_lock(&tcp_exit_batch_mutex);
tcp_twsk_purge(net_exit_list);
list_for_each_entry(net, net_exit_list, exit_list) {
inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
tcp_fastopen_ctx_destroy(net);
}
mutex_unlock(&tcp_exit_batch_mutex);
}
static struct pernet_operations __net_initdata tcp_sk_ops = {
.init = tcp_sk_init,
.exit = tcp_sk_exit,
.exit_batch = tcp_sk_exit_batch,
};
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
struct sock_common *sk_common, uid_t uid)
#define INIT_BATCH_SZ 16
static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
{
struct bpf_tcp_iter_state *iter = priv_data;
int err;
err = bpf_iter_init_seq_net(priv_data, aux);
if (err)
return err;
err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER);
if (err) {
bpf_iter_fini_seq_net(priv_data);
return err;
}
return 0;
}
static void bpf_iter_fini_tcp(void *priv_data)
{
struct bpf_tcp_iter_state *iter = priv_data;
bpf_iter_fini_seq_net(priv_data);
kvfree(iter->batch);
}
static const struct bpf_iter_seq_info tcp_seq_info = {
.seq_ops = &bpf_iter_tcp_seq_ops,
.init_seq_private = bpf_iter_init_tcp,
.fini_seq_private = bpf_iter_fini_tcp,
.seq_priv_size = sizeof(struct bpf_tcp_iter_state),
};
static const struct bpf_func_proto *
bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_setsockopt:
return &bpf_sk_setsockopt_proto;
case BPF_FUNC_getsockopt:
return &bpf_sk_getsockopt_proto;
default:
return NULL;
}
}
static struct bpf_iter_reg tcp_reg_info = {
.target = "tcp",
.ctx_arg_info_size = 1,
.ctx_arg_info = {
{ offsetof(struct bpf_iter__tcp, sk_common),
PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
},
.get_func_proto = bpf_iter_tcp_get_func_proto,
.seq_info = &tcp_seq_info,
};
static void __init bpf_iter_register(void)
{
tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
if (bpf_iter_reg_target(&tcp_reg_info))
pr_warn("Warning: could not register bpf iterator tcp\n");
}
#endif
void __init tcp_v4_init(void)
{
int cpu, res;
for_each_possible_cpu(cpu) {
struct sock *sk;
res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
IPPROTO_TCP, &init_net);
if (res)
panic("Failed to create the TCP control socket.\n");
sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
/* Please enforce IP_DF and IPID==0 for RST and
* ACK sent in SYN-RECV and TIME-WAIT state.
*/
inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
sk->sk_clockid = CLOCK_MONOTONIC;
per_cpu(ipv4_tcp_sk.sock, cpu) = sk;
}
if (register_pernet_subsys(&tcp_sk_ops))
panic("Failed to create the TCP control socket.\n");
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
bpf_iter_register();
#endif
}