Files
linux/tools/testing/selftests/vfio/lib/include/vfio_util.h
Alex Mastro ce0e3c403e vfio: selftests: add iova allocator
Add struct iova_allocator, which gives tests a convenient way to generate
legally-accessible IOVAs to map. This allocator traverses the sorted
available IOVA ranges linearly, requires power-of-two size allocations,
and does not support freeing iova allocations. The assumption is that
tests are not IOVA space-bounded, and will not need to recycle IOVAs.

This is based on Alex Williamson's patch series for adding an IOVA
allocator [1].

[1] https://lore.kernel.org/all/20251108212954.26477-1-alex@shazbot.org/

Reviewed-by: David Matlack <dmatlack@google.com>
Tested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Alex Mastro <amastro@fb.com>
Link: https://lore.kernel.org/r/20251111-iova-ranges-v3-3-7960244642c5@fb.com
Signed-off-by: Alex Williamson <alex@shazbot.org>
2025-11-12 08:04:42 -07:00

332 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef SELFTESTS_VFIO_LIB_INCLUDE_VFIO_UTIL_H
#define SELFTESTS_VFIO_LIB_INCLUDE_VFIO_UTIL_H
#include <fcntl.h>
#include <string.h>
#include <uapi/linux/types.h>
#include <linux/iommufd.h>
#include <linux/list.h>
#include <linux/pci_regs.h>
#include <linux/vfio.h>
#include "../../../kselftest.h"
#define VFIO_LOG_AND_EXIT(...) do { \
fprintf(stderr, " " __VA_ARGS__); \
fprintf(stderr, "\n"); \
exit(KSFT_FAIL); \
} while (0)
#define VFIO_ASSERT_OP(_lhs, _rhs, _op, ...) do { \
typeof(_lhs) __lhs = (_lhs); \
typeof(_rhs) __rhs = (_rhs); \
\
if (__lhs _op __rhs) \
break; \
\
fprintf(stderr, "%s:%u: Assertion Failure\n\n", __FILE__, __LINE__); \
fprintf(stderr, " Expression: " #_lhs " " #_op " " #_rhs "\n"); \
fprintf(stderr, " Observed: %#lx %s %#lx\n", \
(u64)__lhs, #_op, (u64)__rhs); \
fprintf(stderr, " [errno: %d - %s]\n", errno, strerror(errno)); \
VFIO_LOG_AND_EXIT(__VA_ARGS__); \
} while (0)
#define VFIO_ASSERT_EQ(_a, _b, ...) VFIO_ASSERT_OP(_a, _b, ==, ##__VA_ARGS__)
#define VFIO_ASSERT_NE(_a, _b, ...) VFIO_ASSERT_OP(_a, _b, !=, ##__VA_ARGS__)
#define VFIO_ASSERT_LT(_a, _b, ...) VFIO_ASSERT_OP(_a, _b, <, ##__VA_ARGS__)
#define VFIO_ASSERT_LE(_a, _b, ...) VFIO_ASSERT_OP(_a, _b, <=, ##__VA_ARGS__)
#define VFIO_ASSERT_GT(_a, _b, ...) VFIO_ASSERT_OP(_a, _b, >, ##__VA_ARGS__)
#define VFIO_ASSERT_GE(_a, _b, ...) VFIO_ASSERT_OP(_a, _b, >=, ##__VA_ARGS__)
#define VFIO_ASSERT_TRUE(_a, ...) VFIO_ASSERT_NE(false, (_a), ##__VA_ARGS__)
#define VFIO_ASSERT_FALSE(_a, ...) VFIO_ASSERT_EQ(false, (_a), ##__VA_ARGS__)
#define VFIO_ASSERT_NULL(_a, ...) VFIO_ASSERT_EQ(NULL, _a, ##__VA_ARGS__)
#define VFIO_ASSERT_NOT_NULL(_a, ...) VFIO_ASSERT_NE(NULL, _a, ##__VA_ARGS__)
#define VFIO_FAIL(_fmt, ...) do { \
fprintf(stderr, "%s:%u: FAIL\n\n", __FILE__, __LINE__); \
VFIO_LOG_AND_EXIT(_fmt, ##__VA_ARGS__); \
} while (0)
struct vfio_iommu_mode {
const char *name;
const char *container_path;
unsigned long iommu_type;
};
/*
* Generator for VFIO selftests fixture variants that replicate across all
* possible IOMMU modes. Tests must define FIXTURE_VARIANT_ADD_IOMMU_MODE()
* which should then use FIXTURE_VARIANT_ADD() to create the variant.
*/
#define FIXTURE_VARIANT_ADD_ALL_IOMMU_MODES(...) \
FIXTURE_VARIANT_ADD_IOMMU_MODE(vfio_type1_iommu, ##__VA_ARGS__); \
FIXTURE_VARIANT_ADD_IOMMU_MODE(vfio_type1v2_iommu, ##__VA_ARGS__); \
FIXTURE_VARIANT_ADD_IOMMU_MODE(iommufd_compat_type1, ##__VA_ARGS__); \
FIXTURE_VARIANT_ADD_IOMMU_MODE(iommufd_compat_type1v2, ##__VA_ARGS__); \
FIXTURE_VARIANT_ADD_IOMMU_MODE(iommufd, ##__VA_ARGS__)
struct vfio_pci_bar {
struct vfio_region_info info;
void *vaddr;
};
typedef u64 iova_t;
#define INVALID_IOVA UINT64_MAX
struct vfio_dma_region {
struct list_head link;
void *vaddr;
iova_t iova;
u64 size;
};
struct vfio_pci_device;
struct vfio_pci_driver_ops {
const char *name;
/**
* @probe() - Check if the driver supports the given device.
*
* Return: 0 on success, non-0 on failure.
*/
int (*probe)(struct vfio_pci_device *device);
/**
* @init() - Initialize the driver for @device.
*
* Must be called after device->driver.region has been initialized.
*/
void (*init)(struct vfio_pci_device *device);
/**
* remove() - Deinitialize the driver for @device.
*/
void (*remove)(struct vfio_pci_device *device);
/**
* memcpy_start() - Kick off @count repeated memcpy operations from
* [@src, @src + @size) to [@dst, @dst + @size).
*
* Guarantees:
* - The device will attempt DMA reads on [src, src + size).
* - The device will attempt DMA writes on [dst, dst + size).
* - The device will not generate any interrupts.
*
* memcpy_start() returns immediately, it does not wait for the
* copies to complete.
*/
void (*memcpy_start)(struct vfio_pci_device *device,
iova_t src, iova_t dst, u64 size, u64 count);
/**
* memcpy_wait() - Wait until the memcpy operations started by
* memcpy_start() have finished.
*
* Guarantees:
* - All in-flight DMAs initiated by memcpy_start() are fully complete
* before memcpy_wait() returns.
*
* Returns non-0 if the driver detects that an error occurred during the
* memcpy, 0 otherwise.
*/
int (*memcpy_wait)(struct vfio_pci_device *device);
/**
* send_msi() - Make the device send the MSI device->driver.msi.
*
* Guarantees:
* - The device will send the MSI once.
*/
void (*send_msi)(struct vfio_pci_device *device);
};
struct vfio_pci_driver {
const struct vfio_pci_driver_ops *ops;
bool initialized;
bool memcpy_in_progress;
/* Region to be used by the driver (e.g. for in-memory descriptors) */
struct vfio_dma_region region;
/* The maximum size that can be passed to memcpy_start(). */
u64 max_memcpy_size;
/* The maximum count that can be passed to memcpy_start(). */
u64 max_memcpy_count;
/* The MSI vector the device will signal in ops->send_msi(). */
int msi;
};
struct vfio_pci_device {
int fd;
const struct vfio_iommu_mode *iommu_mode;
int group_fd;
int container_fd;
int iommufd;
u32 ioas_id;
struct vfio_device_info info;
struct vfio_region_info config_space;
struct vfio_pci_bar bars[PCI_STD_NUM_BARS];
struct vfio_irq_info msi_info;
struct vfio_irq_info msix_info;
struct list_head dma_regions;
/* eventfds for MSI and MSI-x interrupts */
int msi_eventfds[PCI_MSIX_FLAGS_QSIZE + 1];
struct vfio_pci_driver driver;
};
struct iova_allocator {
struct iommu_iova_range *ranges;
u32 nranges;
u32 range_idx;
u64 range_offset;
};
/*
* Return the BDF string of the device that the test should use.
*
* If a BDF string is provided by the user on the command line (as the last
* element of argv[]), then this function will return that and decrement argc
* by 1.
*
* Otherwise this function will attempt to use the environment variable
* $VFIO_SELFTESTS_BDF.
*
* If BDF cannot be determined then the test will exit with KSFT_SKIP.
*/
const char *vfio_selftests_get_bdf(int *argc, char *argv[]);
const char *vfio_pci_get_cdev_path(const char *bdf);
extern const char *default_iommu_mode;
struct vfio_pci_device *vfio_pci_device_init(const char *bdf, const char *iommu_mode);
void vfio_pci_device_cleanup(struct vfio_pci_device *device);
void vfio_pci_device_reset(struct vfio_pci_device *device);
struct iommu_iova_range *vfio_pci_iova_ranges(struct vfio_pci_device *device,
u32 *nranges);
struct iova_allocator *iova_allocator_init(struct vfio_pci_device *device);
void iova_allocator_cleanup(struct iova_allocator *allocator);
iova_t iova_allocator_alloc(struct iova_allocator *allocator, size_t size);
int __vfio_pci_dma_map(struct vfio_pci_device *device,
struct vfio_dma_region *region);
int __vfio_pci_dma_unmap(struct vfio_pci_device *device,
struct vfio_dma_region *region,
u64 *unmapped);
int __vfio_pci_dma_unmap_all(struct vfio_pci_device *device, u64 *unmapped);
static inline void vfio_pci_dma_map(struct vfio_pci_device *device,
struct vfio_dma_region *region)
{
VFIO_ASSERT_EQ(__vfio_pci_dma_map(device, region), 0);
}
static inline void vfio_pci_dma_unmap(struct vfio_pci_device *device,
struct vfio_dma_region *region)
{
VFIO_ASSERT_EQ(__vfio_pci_dma_unmap(device, region, NULL), 0);
}
static inline void vfio_pci_dma_unmap_all(struct vfio_pci_device *device)
{
VFIO_ASSERT_EQ(__vfio_pci_dma_unmap_all(device, NULL), 0);
}
void vfio_pci_config_access(struct vfio_pci_device *device, bool write,
size_t config, size_t size, void *data);
#define vfio_pci_config_read(_device, _offset, _type) ({ \
_type __data; \
vfio_pci_config_access((_device), false, _offset, sizeof(__data), &__data); \
__data; \
})
#define vfio_pci_config_readb(_d, _o) vfio_pci_config_read(_d, _o, u8)
#define vfio_pci_config_readw(_d, _o) vfio_pci_config_read(_d, _o, u16)
#define vfio_pci_config_readl(_d, _o) vfio_pci_config_read(_d, _o, u32)
#define vfio_pci_config_write(_device, _offset, _value, _type) do { \
_type __data = (_value); \
vfio_pci_config_access((_device), true, _offset, sizeof(_type), &__data); \
} while (0)
#define vfio_pci_config_writeb(_d, _o, _v) vfio_pci_config_write(_d, _o, _v, u8)
#define vfio_pci_config_writew(_d, _o, _v) vfio_pci_config_write(_d, _o, _v, u16)
#define vfio_pci_config_writel(_d, _o, _v) vfio_pci_config_write(_d, _o, _v, u32)
void vfio_pci_irq_enable(struct vfio_pci_device *device, u32 index,
u32 vector, int count);
void vfio_pci_irq_disable(struct vfio_pci_device *device, u32 index);
void vfio_pci_irq_trigger(struct vfio_pci_device *device, u32 index, u32 vector);
static inline void fcntl_set_nonblock(int fd)
{
int r;
r = fcntl(fd, F_GETFL, 0);
VFIO_ASSERT_NE(r, -1, "F_GETFL failed for fd %d\n", fd);
r = fcntl(fd, F_SETFL, r | O_NONBLOCK);
VFIO_ASSERT_NE(r, -1, "F_SETFL O_NONBLOCK failed for fd %d\n", fd);
}
static inline void vfio_pci_msi_enable(struct vfio_pci_device *device,
u32 vector, int count)
{
vfio_pci_irq_enable(device, VFIO_PCI_MSI_IRQ_INDEX, vector, count);
}
static inline void vfio_pci_msi_disable(struct vfio_pci_device *device)
{
vfio_pci_irq_disable(device, VFIO_PCI_MSI_IRQ_INDEX);
}
static inline void vfio_pci_msix_enable(struct vfio_pci_device *device,
u32 vector, int count)
{
vfio_pci_irq_enable(device, VFIO_PCI_MSIX_IRQ_INDEX, vector, count);
}
static inline void vfio_pci_msix_disable(struct vfio_pci_device *device)
{
vfio_pci_irq_disable(device, VFIO_PCI_MSIX_IRQ_INDEX);
}
iova_t __to_iova(struct vfio_pci_device *device, void *vaddr);
iova_t to_iova(struct vfio_pci_device *device, void *vaddr);
static inline bool vfio_pci_device_match(struct vfio_pci_device *device,
u16 vendor_id, u16 device_id)
{
return (vendor_id == vfio_pci_config_readw(device, PCI_VENDOR_ID)) &&
(device_id == vfio_pci_config_readw(device, PCI_DEVICE_ID));
}
void vfio_pci_driver_probe(struct vfio_pci_device *device);
void vfio_pci_driver_init(struct vfio_pci_device *device);
void vfio_pci_driver_remove(struct vfio_pci_device *device);
int vfio_pci_driver_memcpy(struct vfio_pci_device *device,
iova_t src, iova_t dst, u64 size);
void vfio_pci_driver_memcpy_start(struct vfio_pci_device *device,
iova_t src, iova_t dst, u64 size,
u64 count);
int vfio_pci_driver_memcpy_wait(struct vfio_pci_device *device);
void vfio_pci_driver_send_msi(struct vfio_pci_device *device);
#endif /* SELFTESTS_VFIO_LIB_INCLUDE_VFIO_UTIL_H */