Files
linux/drivers/vfio/pci/nvgrace-gpu/main.c
Ankit Agrawal a23b10608d vfio/nvgrace-gpu: wait for the GPU mem to be ready
Speculative prefetches from CPU to GPU memory until the GPU is
ready after reset can cause harmless corrected RAS events to
be logged on Grace systems. It is thus preferred that the
mapping not be re-established until the GPU is ready post reset.

The GPU readiness can be checked through BAR0 registers similar
to the checking at the time of device probe.

It can take several seconds for the GPU to be ready. So it is
desirable that the time overlaps as much of the VM startup as
possible to reduce impact on the VM bootup time. The GPU
readiness state is thus checked on the first fault/huge_fault
request or read/write access which amortizes the GPU readiness
time.

The first fault and read/write checks the GPU state when the
reset_done flag - which denotes whether the GPU has just been
reset. The memory_lock is taken across map/access to avoid
races with GPU reset.

Also check if the memory is enabled, before waiting for GPU
to be ready. Otherwise the readiness check would block for 30s.

Lastly added PM handling wrapping on read/write access.

Cc: Shameer Kolothum <skolothumtho@nvidia.com>
Cc: Alex Williamson <alex@shazbot.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Vikram Sethi <vsethi@nvidia.com>
Reviewed-by: Shameer Kolothum <skolothumtho@nvidia.com>
Suggested-by: Alex Williamson <alex@shazbot.org>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20251127170632.3477-7-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex@shazbot.org>
2025-11-28 10:09:26 -07:00

1188 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved
*/
#include <linux/sizes.h>
#include <linux/vfio_pci_core.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/pci-p2pdma.h>
#include <linux/pm_runtime.h>
/*
* The device memory usable to the workloads running in the VM is cached
* and showcased as a 64b device BAR (comprising of BAR4 and BAR5 region)
* to the VM and is represented as usemem.
* Moreover, the VM GPU device driver needs a non-cacheable region to
* support the MIG feature. This region is also exposed as a 64b BAR
* (comprising of BAR2 and BAR3 region) and represented as resmem.
*/
#define RESMEM_REGION_INDEX VFIO_PCI_BAR2_REGION_INDEX
#define USEMEM_REGION_INDEX VFIO_PCI_BAR4_REGION_INDEX
/* A hardwired and constant ABI value between the GPU FW and VFIO driver. */
#define MEMBLK_SIZE SZ_512M
#define DVSEC_BITMAP_OFFSET 0xA
#define MIG_SUPPORTED_WITH_CACHED_RESMEM BIT(0)
#define GPU_CAP_DVSEC_REGISTER 3
#define C2C_LINK_BAR0_OFFSET 0x1498
#define HBM_TRAINING_BAR0_OFFSET 0x200BC
#define STATUS_READY 0xFF
#define POLL_QUANTUM_MS 1000
#define POLL_TIMEOUT_MS (30 * 1000)
/*
* The state of the two device memory region - resmem and usemem - is
* saved as struct mem_region.
*/
struct mem_region {
phys_addr_t memphys; /* Base physical address of the region */
size_t memlength; /* Region size */
size_t bar_size; /* Reported region BAR size */
__le64 bar_val; /* Emulated BAR offset registers */
union {
void *memaddr;
void __iomem *ioaddr;
}; /* Base virtual address of the region */
};
struct nvgrace_gpu_pci_core_device {
struct vfio_pci_core_device core_device;
/* Cached and usable memory for the VM. */
struct mem_region usemem;
/* Non cached memory carved out from the end of device memory */
struct mem_region resmem;
/* Lock to control device memory kernel mapping */
struct mutex remap_lock;
bool has_mig_hw_bug;
/* GPU has just been reset */
bool reset_done;
};
static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev)
{
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
nvdev->resmem.bar_val = 0;
nvdev->usemem.bar_val = 0;
}
/* Choose the structure corresponding to the fake BAR with a given index. */
static struct mem_region *
nvgrace_gpu_memregion(int index,
struct nvgrace_gpu_pci_core_device *nvdev)
{
if (index == USEMEM_REGION_INDEX)
return &nvdev->usemem;
if (nvdev->resmem.memlength && index == RESMEM_REGION_INDEX)
return &nvdev->resmem;
return NULL;
}
static int nvgrace_gpu_open_device(struct vfio_device *core_vdev)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
int ret;
ret = vfio_pci_core_enable(vdev);
if (ret)
return ret;
if (nvdev->usemem.memlength) {
nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
mutex_init(&nvdev->remap_lock);
}
/*
* GPU readiness is checked by reading the BAR0 registers.
*
* ioremap BAR0 to ensure that the BAR0 mapping is present before
* register reads on first fault before establishing any GPU
* memory mapping.
*/
ret = vfio_pci_core_setup_barmap(vdev, 0);
if (ret) {
vfio_pci_core_disable(vdev);
return ret;
}
vfio_pci_core_finish_enable(vdev);
return 0;
}
static void nvgrace_gpu_close_device(struct vfio_device *core_vdev)
{
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
/* Unmap the mapping to the device memory cached region */
if (nvdev->usemem.memaddr) {
memunmap(nvdev->usemem.memaddr);
nvdev->usemem.memaddr = NULL;
}
/* Unmap the mapping to the device memory non-cached region */
if (nvdev->resmem.ioaddr) {
iounmap(nvdev->resmem.ioaddr);
nvdev->resmem.ioaddr = NULL;
}
mutex_destroy(&nvdev->remap_lock);
vfio_pci_core_close_device(core_vdev);
}
static int nvgrace_gpu_wait_device_ready(void __iomem *io)
{
unsigned long timeout = jiffies + msecs_to_jiffies(POLL_TIMEOUT_MS);
do {
if ((ioread32(io + C2C_LINK_BAR0_OFFSET) == STATUS_READY) &&
(ioread32(io + HBM_TRAINING_BAR0_OFFSET) == STATUS_READY))
return 0;
msleep(POLL_QUANTUM_MS);
} while (!time_after(jiffies, timeout));
return -ETIME;
}
/*
* If the GPU memory is accessed by the CPU while the GPU is not ready
* after reset, it can cause harmless corrected RAS events to be logged.
* Make sure the GPU is ready before establishing the mappings.
*/
static int
nvgrace_gpu_check_device_ready(struct nvgrace_gpu_pci_core_device *nvdev)
{
struct vfio_pci_core_device *vdev = &nvdev->core_device;
int ret;
lockdep_assert_held_read(&vdev->memory_lock);
if (!nvdev->reset_done)
return 0;
if (!__vfio_pci_memory_enabled(vdev))
return -EIO;
ret = nvgrace_gpu_wait_device_ready(vdev->barmap[0]);
if (ret)
return ret;
nvdev->reset_done = false;
return 0;
}
static unsigned long addr_to_pgoff(struct vm_area_struct *vma,
unsigned long addr)
{
u64 pgoff = vma->vm_pgoff &
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
return ((addr - vma->vm_start) >> PAGE_SHIFT) + pgoff;
}
static vm_fault_t nvgrace_gpu_vfio_pci_huge_fault(struct vm_fault *vmf,
unsigned int order)
{
struct vm_area_struct *vma = vmf->vma;
struct nvgrace_gpu_pci_core_device *nvdev = vma->vm_private_data;
struct vfio_pci_core_device *vdev = &nvdev->core_device;
unsigned int index =
vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
vm_fault_t ret = VM_FAULT_FALLBACK;
struct mem_region *memregion;
unsigned long pfn, addr;
memregion = nvgrace_gpu_memregion(index, nvdev);
if (!memregion)
return VM_FAULT_SIGBUS;
addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
pfn = PHYS_PFN(memregion->memphys) + addr_to_pgoff(vma, addr);
if (is_aligned_for_order(vma, addr, pfn, order)) {
scoped_guard(rwsem_read, &vdev->memory_lock) {
if (vdev->pm_runtime_engaged ||
nvgrace_gpu_check_device_ready(nvdev))
return VM_FAULT_SIGBUS;
ret = vfio_pci_vmf_insert_pfn(vdev, vmf, pfn, order);
}
}
dev_dbg_ratelimited(&vdev->pdev->dev,
"%s order = %d pfn 0x%lx: 0x%x\n",
__func__, order, pfn,
(unsigned int)ret);
return ret;
}
static vm_fault_t nvgrace_gpu_vfio_pci_fault(struct vm_fault *vmf)
{
return nvgrace_gpu_vfio_pci_huge_fault(vmf, 0);
}
static const struct vm_operations_struct nvgrace_gpu_vfio_pci_mmap_ops = {
.fault = nvgrace_gpu_vfio_pci_fault,
#ifdef CONFIG_ARCH_SUPPORTS_HUGE_PFNMAP
.huge_fault = nvgrace_gpu_vfio_pci_huge_fault,
#endif
};
static int nvgrace_gpu_mmap(struct vfio_device *core_vdev,
struct vm_area_struct *vma)
{
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
struct mem_region *memregion;
u64 req_len, pgoff, end;
unsigned int index;
index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
memregion = nvgrace_gpu_memregion(index, nvdev);
if (!memregion)
return vfio_pci_core_mmap(core_vdev, vma);
/*
* Request to mmap the BAR. Map to the CPU accessible memory on the
* GPU using the memory information gathered from the system ACPI
* tables.
*/
pgoff = vma->vm_pgoff &
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) ||
check_add_overflow(PFN_PHYS(pgoff), req_len, &end))
return -EOVERFLOW;
/*
* Check that the mapping request does not go beyond the exposed
* device memory size.
*/
if (end > memregion->memlength)
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
/*
* The carved out region of the device memory needs the NORMAL_NC
* property. Communicate as such to the hypervisor.
*/
if (index == RESMEM_REGION_INDEX) {
/*
* The nvgrace-gpu module has no issues with uncontained
* failures on NORMAL_NC accesses. VM_ALLOW_ANY_UNCACHED is
* set to communicate to the KVM to S2 map as NORMAL_NC.
* This opens up guest usage of NORMAL_NC for this mapping.
*/
vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED);
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
}
vma->vm_ops = &nvgrace_gpu_vfio_pci_mmap_ops;
vma->vm_private_data = nvdev;
return 0;
}
static int nvgrace_gpu_ioctl_get_region_info(struct vfio_device *core_vdev,
struct vfio_region_info *info,
struct vfio_info_cap *caps)
{
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
struct vfio_region_info_cap_sparse_mmap *sparse;
struct mem_region *memregion;
u32 size;
int ret;
/*
* Request to determine the BAR region information. Send the
* GPU memory information.
*/
memregion = nvgrace_gpu_memregion(info->index, nvdev);
if (!memregion)
return vfio_pci_ioctl_get_region_info(core_vdev, info, caps);
size = struct_size(sparse, areas, 1);
/*
* Setup for sparse mapping for the device memory. Only the
* available device memory on the hardware is shown as a
* mappable region.
*/
sparse = kzalloc(size, GFP_KERNEL);
if (!sparse)
return -ENOMEM;
sparse->nr_areas = 1;
sparse->areas[0].offset = 0;
sparse->areas[0].size = memregion->memlength;
sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
sparse->header.version = 1;
ret = vfio_info_add_capability(caps, &sparse->header, size);
kfree(sparse);
if (ret)
return ret;
info->offset = VFIO_PCI_INDEX_TO_OFFSET(info->index);
/*
* The region memory size may not be power-of-2 aligned.
* Given that the memory is a BAR and may not be
* aligned, roundup to the next power-of-2.
*/
info->size = memregion->bar_size;
info->flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE |
VFIO_REGION_INFO_FLAG_MMAP;
return 0;
}
static long nvgrace_gpu_ioctl(struct vfio_device *core_vdev,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case VFIO_DEVICE_IOEVENTFD:
return -ENOTTY;
case VFIO_DEVICE_RESET:
nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
fallthrough;
default:
return vfio_pci_core_ioctl(core_vdev, cmd, arg);
}
}
static __le64
nvgrace_gpu_get_read_value(size_t bar_size, u64 flags, __le64 val64)
{
u64 tmp_val;
tmp_val = le64_to_cpu(val64);
tmp_val &= ~(bar_size - 1);
tmp_val |= flags;
return cpu_to_le64(tmp_val);
}
/*
* Both the usable (usemem) and the reserved (resmem) device memory region
* are exposed as a 64b fake device BARs in the VM. These fake BARs must
* respond to the accesses on their respective PCI config space offsets.
*
* resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3.
* usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5.
*/
static ssize_t
nvgrace_gpu_read_config_emu(struct vfio_device *core_vdev,
char __user *buf, size_t count, loff_t *ppos)
{
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
struct mem_region *memregion = NULL;
__le64 val64;
size_t register_offset;
loff_t copy_offset;
size_t copy_count;
int ret;
ret = vfio_pci_core_read(core_vdev, buf, count, ppos);
if (ret < 0)
return ret;
if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
sizeof(val64),
&copy_offset, &copy_count,
&register_offset))
memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
else if (vfio_pci_core_range_intersect_range(pos, count,
PCI_BASE_ADDRESS_4,
sizeof(val64),
&copy_offset, &copy_count,
&register_offset))
memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
if (memregion) {
val64 = nvgrace_gpu_get_read_value(memregion->bar_size,
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH,
memregion->bar_val);
if (copy_to_user(buf + copy_offset,
(void *)&val64 + register_offset, copy_count)) {
/*
* The position has been incremented in
* vfio_pci_core_read. Reset the offset back to the
* starting position.
*/
*ppos -= count;
return -EFAULT;
}
}
return count;
}
static ssize_t
nvgrace_gpu_write_config_emu(struct vfio_device *core_vdev,
const char __user *buf, size_t count, loff_t *ppos)
{
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
struct mem_region *memregion = NULL;
size_t register_offset;
loff_t copy_offset;
size_t copy_count;
if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
sizeof(u64), &copy_offset,
&copy_count, &register_offset))
memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
else if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_4,
sizeof(u64), &copy_offset,
&copy_count, &register_offset))
memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
if (memregion) {
if (copy_from_user((void *)&memregion->bar_val + register_offset,
buf + copy_offset, copy_count))
return -EFAULT;
*ppos += copy_count;
return copy_count;
}
return vfio_pci_core_write(core_vdev, buf, count, ppos);
}
/*
* Ad hoc map the device memory in the module kernel VA space. Primarily needed
* as vfio does not require the userspace driver to only perform accesses through
* mmaps of the vfio-pci BAR regions and such accesses should be supported using
* vfio_device_ops read/write implementations.
*
* The usemem region is cacheable memory and hence is memremaped.
* The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC).
*/
static int
nvgrace_gpu_map_device_mem(int index,
struct nvgrace_gpu_pci_core_device *nvdev)
{
struct mem_region *memregion;
int ret = 0;
memregion = nvgrace_gpu_memregion(index, nvdev);
if (!memregion)
return -EINVAL;
mutex_lock(&nvdev->remap_lock);
if (memregion->memaddr)
goto unlock;
if (index == USEMEM_REGION_INDEX)
memregion->memaddr = memremap(memregion->memphys,
memregion->memlength,
MEMREMAP_WB);
else
memregion->ioaddr = ioremap_wc(memregion->memphys,
memregion->memlength);
if (!memregion->memaddr)
ret = -ENOMEM;
unlock:
mutex_unlock(&nvdev->remap_lock);
return ret;
}
/*
* Read the data from the device memory (mapped either through ioremap
* or memremap) into the user buffer.
*/
static int
nvgrace_gpu_map_and_read(struct nvgrace_gpu_pci_core_device *nvdev,
char __user *buf, size_t mem_count, loff_t *ppos)
{
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
int ret;
if (!mem_count)
return 0;
/*
* Handle read on the BAR regions. Map to the target device memory
* physical address and copy to the request read buffer.
*/
ret = nvgrace_gpu_map_device_mem(index, nvdev);
if (ret)
return ret;
if (index == USEMEM_REGION_INDEX) {
if (copy_to_user(buf,
(u8 *)nvdev->usemem.memaddr + offset,
mem_count))
ret = -EFAULT;
} else {
/*
* The hardware ensures that the system does not crash when
* the device memory is accessed with the memory enable
* turned off. It synthesizes ~0 on such read. So there is
* no need to check or support the disablement/enablement of
* BAR through PCI_COMMAND config space register. Pass
* test_mem flag as false.
*/
ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
nvdev->resmem.ioaddr,
buf, offset, mem_count,
0, 0, false);
}
return ret;
}
/*
* Read count bytes from the device memory at an offset. The actual device
* memory size (available) may not be a power-of-2. So the driver fakes
* the size to a power-of-2 (reported) when exposing to a user space driver.
*
* Reads starting beyond the reported size generate -EINVAL; reads extending
* beyond the actual device size is filled with ~0; reads extending beyond
* the reported size are truncated.
*/
static ssize_t
nvgrace_gpu_read_mem(struct nvgrace_gpu_pci_core_device *nvdev,
char __user *buf, size_t count, loff_t *ppos)
{
struct vfio_pci_core_device *vdev = &nvdev->core_device;
u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
struct mem_region *memregion;
size_t mem_count, i;
u8 val = 0xFF;
int ret;
/* No need to do NULL check as caller does. */
memregion = nvgrace_gpu_memregion(index, nvdev);
if (offset >= memregion->bar_size)
return -EINVAL;
/* Clip short the read request beyond reported BAR size */
count = min(count, memregion->bar_size - (size_t)offset);
/*
* Determine how many bytes to be actually read from the device memory.
* Read request beyond the actual device memory size is filled with ~0,
* while those beyond the actual reported size is skipped.
*/
if (offset >= memregion->memlength)
mem_count = 0;
else
mem_count = min(count, memregion->memlength - (size_t)offset);
scoped_guard(rwsem_read, &vdev->memory_lock) {
ret = nvgrace_gpu_check_device_ready(nvdev);
if (ret)
return ret;
ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos);
if (ret)
return ret;
}
/*
* Only the device memory present on the hardware is mapped, which may
* not be power-of-2 aligned. A read to an offset beyond the device memory
* size is filled with ~0.
*/
for (i = mem_count; i < count; i++) {
ret = put_user(val, (unsigned char __user *)(buf + i));
if (ret)
return ret;
}
*ppos += count;
return count;
}
static ssize_t
nvgrace_gpu_read(struct vfio_device *core_vdev,
char __user *buf, size_t count, loff_t *ppos)
{
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
struct vfio_pci_core_device *vdev = &nvdev->core_device;
int ret;
if (nvgrace_gpu_memregion(index, nvdev)) {
if (pm_runtime_resume_and_get(&vdev->pdev->dev))
return -EIO;
ret = nvgrace_gpu_read_mem(nvdev, buf, count, ppos);
pm_runtime_put(&vdev->pdev->dev);
return ret;
}
if (index == VFIO_PCI_CONFIG_REGION_INDEX)
return nvgrace_gpu_read_config_emu(core_vdev, buf, count, ppos);
return vfio_pci_core_read(core_vdev, buf, count, ppos);
}
/*
* Write the data to the device memory (mapped either through ioremap
* or memremap) from the user buffer.
*/
static int
nvgrace_gpu_map_and_write(struct nvgrace_gpu_pci_core_device *nvdev,
const char __user *buf, size_t mem_count,
loff_t *ppos)
{
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
int ret;
if (!mem_count)
return 0;
ret = nvgrace_gpu_map_device_mem(index, nvdev);
if (ret)
return ret;
if (index == USEMEM_REGION_INDEX) {
if (copy_from_user((u8 *)nvdev->usemem.memaddr + pos,
buf, mem_count))
return -EFAULT;
} else {
/*
* The hardware ensures that the system does not crash when
* the device memory is accessed with the memory enable
* turned off. It drops such writes. So there is no need to
* check or support the disablement/enablement of BAR
* through PCI_COMMAND config space register. Pass test_mem
* flag as false.
*/
ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
nvdev->resmem.ioaddr,
(char __user *)buf, pos, mem_count,
0, 0, true);
}
return ret;
}
/*
* Write count bytes to the device memory at a given offset. The actual device
* memory size (available) may not be a power-of-2. So the driver fakes the
* size to a power-of-2 (reported) when exposing to a user space driver.
*
* Writes extending beyond the reported size are truncated; writes starting
* beyond the reported size generate -EINVAL.
*/
static ssize_t
nvgrace_gpu_write_mem(struct nvgrace_gpu_pci_core_device *nvdev,
size_t count, loff_t *ppos, const char __user *buf)
{
struct vfio_pci_core_device *vdev = &nvdev->core_device;
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
struct mem_region *memregion;
size_t mem_count;
int ret = 0;
/* No need to do NULL check as caller does. */
memregion = nvgrace_gpu_memregion(index, nvdev);
if (offset >= memregion->bar_size)
return -EINVAL;
/* Clip short the write request beyond reported BAR size */
count = min(count, memregion->bar_size - (size_t)offset);
/*
* Determine how many bytes to be actually written to the device memory.
* Do not write to the offset beyond available size.
*/
if (offset >= memregion->memlength)
goto exitfn;
/*
* Only the device memory present on the hardware is mapped, which may
* not be power-of-2 aligned. Drop access outside the available device
* memory on the hardware.
*/
mem_count = min(count, memregion->memlength - (size_t)offset);
scoped_guard(rwsem_read, &vdev->memory_lock) {
ret = nvgrace_gpu_check_device_ready(nvdev);
if (ret)
return ret;
ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos);
if (ret)
return ret;
}
exitfn:
*ppos += count;
return count;
}
static ssize_t
nvgrace_gpu_write(struct vfio_device *core_vdev,
const char __user *buf, size_t count, loff_t *ppos)
{
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
core_device.vdev);
struct vfio_pci_core_device *vdev = &nvdev->core_device;
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
int ret;
if (nvgrace_gpu_memregion(index, nvdev)) {
if (pm_runtime_resume_and_get(&vdev->pdev->dev))
return -EIO;
ret = nvgrace_gpu_write_mem(nvdev, count, ppos, buf);
pm_runtime_put(&vdev->pdev->dev);
return ret;
}
if (index == VFIO_PCI_CONFIG_REGION_INDEX)
return nvgrace_gpu_write_config_emu(core_vdev, buf, count, ppos);
return vfio_pci_core_write(core_vdev, buf, count, ppos);
}
static int nvgrace_get_dmabuf_phys(struct vfio_pci_core_device *core_vdev,
struct p2pdma_provider **provider,
unsigned int region_index,
struct dma_buf_phys_vec *phys_vec,
struct vfio_region_dma_range *dma_ranges,
size_t nr_ranges)
{
struct nvgrace_gpu_pci_core_device *nvdev = container_of(
core_vdev, struct nvgrace_gpu_pci_core_device, core_device);
struct pci_dev *pdev = core_vdev->pdev;
struct mem_region *mem_region;
/*
* if (nvdev->resmem.memlength && region_index == RESMEM_REGION_INDEX) {
* The P2P properties of the non-BAR memory is the same as the
* BAR memory, so just use the provider for index 0. Someday
* when CXL gets P2P support we could create CXLish providers
* for the non-BAR memory.
* } else if (region_index == USEMEM_REGION_INDEX) {
* This is actually cachable memory and isn't treated as P2P in
* the chip. For now we have no way to push cachable memory
* through everything and the Grace HW doesn't care what caching
* attribute is programmed into the SMMU. So use BAR 0.
* }
*/
mem_region = nvgrace_gpu_memregion(region_index, nvdev);
if (mem_region) {
*provider = pcim_p2pdma_provider(pdev, 0);
if (!*provider)
return -EINVAL;
return vfio_pci_core_fill_phys_vec(phys_vec, dma_ranges,
nr_ranges,
mem_region->memphys,
mem_region->memlength);
}
return vfio_pci_core_get_dmabuf_phys(core_vdev, provider, region_index,
phys_vec, dma_ranges, nr_ranges);
}
static const struct vfio_pci_device_ops nvgrace_gpu_pci_dev_ops = {
.get_dmabuf_phys = nvgrace_get_dmabuf_phys,
};
static const struct vfio_device_ops nvgrace_gpu_pci_ops = {
.name = "nvgrace-gpu-vfio-pci",
.init = vfio_pci_core_init_dev,
.release = vfio_pci_core_release_dev,
.open_device = nvgrace_gpu_open_device,
.close_device = nvgrace_gpu_close_device,
.ioctl = nvgrace_gpu_ioctl,
.get_region_info_caps = nvgrace_gpu_ioctl_get_region_info,
.device_feature = vfio_pci_core_ioctl_feature,
.read = nvgrace_gpu_read,
.write = nvgrace_gpu_write,
.mmap = nvgrace_gpu_mmap,
.request = vfio_pci_core_request,
.match = vfio_pci_core_match,
.match_token_uuid = vfio_pci_core_match_token_uuid,
.bind_iommufd = vfio_iommufd_physical_bind,
.unbind_iommufd = vfio_iommufd_physical_unbind,
.attach_ioas = vfio_iommufd_physical_attach_ioas,
.detach_ioas = vfio_iommufd_physical_detach_ioas,
};
static const struct vfio_pci_device_ops nvgrace_gpu_pci_dev_core_ops = {
.get_dmabuf_phys = vfio_pci_core_get_dmabuf_phys,
};
static const struct vfio_device_ops nvgrace_gpu_pci_core_ops = {
.name = "nvgrace-gpu-vfio-pci-core",
.init = vfio_pci_core_init_dev,
.release = vfio_pci_core_release_dev,
.open_device = nvgrace_gpu_open_device,
.close_device = vfio_pci_core_close_device,
.ioctl = vfio_pci_core_ioctl,
.get_region_info_caps = vfio_pci_ioctl_get_region_info,
.device_feature = vfio_pci_core_ioctl_feature,
.read = vfio_pci_core_read,
.write = vfio_pci_core_write,
.mmap = vfio_pci_core_mmap,
.request = vfio_pci_core_request,
.match = vfio_pci_core_match,
.match_token_uuid = vfio_pci_core_match_token_uuid,
.bind_iommufd = vfio_iommufd_physical_bind,
.unbind_iommufd = vfio_iommufd_physical_unbind,
.attach_ioas = vfio_iommufd_physical_attach_ioas,
.detach_ioas = vfio_iommufd_physical_detach_ioas,
};
static int
nvgrace_gpu_fetch_memory_property(struct pci_dev *pdev,
u64 *pmemphys, u64 *pmemlength)
{
int ret;
/*
* The memory information is present in the system ACPI tables as DSD
* properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size.
*/
ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa",
pmemphys);
if (ret)
return ret;
if (*pmemphys > type_max(phys_addr_t))
return -EOVERFLOW;
ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size",
pmemlength);
if (ret)
return ret;
if (*pmemlength > type_max(size_t))
return -EOVERFLOW;
/*
* If the C2C link is not up due to an error, the coherent device
* memory size is returned as 0. Fail in such case.
*/
if (*pmemlength == 0)
return -ENOMEM;
return ret;
}
static int
nvgrace_gpu_init_nvdev_struct(struct pci_dev *pdev,
struct nvgrace_gpu_pci_core_device *nvdev,
u64 memphys, u64 memlength)
{
int ret = 0;
u64 resmem_size = 0;
/*
* On Grace Hopper systems, the VM GPU device driver needs a non-cacheable
* region to support the MIG feature owing to a hardware bug. Since the
* device memory is mapped as NORMAL cached, carve out a region from the end
* with a different NORMAL_NC property (called as reserved memory and
* represented as resmem). This region then is exposed as a 64b BAR
* (region 2 and 3) to the VM, while exposing the rest (termed as usable
* memory and represented using usemem) as cacheable 64b BAR (region 4 and 5).
*
* devmem (memlength)
* |-------------------------------------------------|
* | |
* usemem.memphys resmem.memphys
*
* This hardware bug is fixed on the Grace Blackwell platforms and the
* presence of the bug can be determined through nvdev->has_mig_hw_bug.
* Thus on systems with the hardware fix, there is no need to partition
* the GPU device memory and the entire memory is usable and mapped as
* NORMAL cached (i.e. resmem size is 0).
*/
if (nvdev->has_mig_hw_bug)
resmem_size = SZ_1G;
nvdev->usemem.memphys = memphys;
/*
* The device memory exposed to the VM is added to the kernel by the
* VM driver module in chunks of memory block size. Note that only the
* usable memory (usemem) is added to the kernel for usage by the VM
* workloads.
*/
if (check_sub_overflow(memlength, resmem_size,
&nvdev->usemem.memlength)) {
ret = -EOVERFLOW;
goto done;
}
/*
* The usemem region is exposed as a 64B Bar composed of region 4 and 5.
* Calculate and save the BAR size for the region.
*/
nvdev->usemem.bar_size = roundup_pow_of_two(nvdev->usemem.memlength);
/*
* If the hardware has the fix for MIG, there is no requirement
* for splitting the device memory to create RESMEM. The entire
* device memory is usable and will be USEMEM. Return here for
* such case.
*/
if (!nvdev->has_mig_hw_bug)
goto done;
/*
* When the device memory is split to workaround the MIG bug on
* Grace Hopper, the USEMEM part of the device memory has to be
* MEMBLK_SIZE aligned. This is a hardwired ABI value between the
* GPU FW and VFIO driver. The VM device driver is also aware of it
* and make use of the value for its calculation to determine USEMEM
* size. Note that the device memory may not be 512M aligned.
*/
nvdev->usemem.memlength = round_down(nvdev->usemem.memlength,
MEMBLK_SIZE);
if (nvdev->usemem.memlength == 0) {
ret = -EINVAL;
goto done;
}
if ((check_add_overflow(nvdev->usemem.memphys,
nvdev->usemem.memlength,
&nvdev->resmem.memphys)) ||
(check_sub_overflow(memlength, nvdev->usemem.memlength,
&nvdev->resmem.memlength))) {
ret = -EOVERFLOW;
goto done;
}
/*
* The resmem region is exposed as a 64b BAR composed of region 2 and 3
* for Grace Hopper. Calculate and save the BAR size for the region.
*/
nvdev->resmem.bar_size = roundup_pow_of_two(nvdev->resmem.memlength);
done:
return ret;
}
static bool nvgrace_gpu_has_mig_hw_bug(struct pci_dev *pdev)
{
int pcie_dvsec;
u16 dvsec_ctrl16;
pcie_dvsec = pci_find_dvsec_capability(pdev, PCI_VENDOR_ID_NVIDIA,
GPU_CAP_DVSEC_REGISTER);
if (pcie_dvsec) {
pci_read_config_word(pdev,
pcie_dvsec + DVSEC_BITMAP_OFFSET,
&dvsec_ctrl16);
if (dvsec_ctrl16 & MIG_SUPPORTED_WITH_CACHED_RESMEM)
return false;
}
return true;
}
/*
* To reduce the system bootup time, the HBM training has
* been moved out of the UEFI on the Grace-Blackwell systems.
*
* The onus of checking whether the HBM training has completed
* thus falls on the module. The HBM training status can be
* determined from a BAR0 register.
*
* Similarly, another BAR0 register exposes the status of the
* CPU-GPU chip-to-chip (C2C) cache coherent interconnect.
*
* Poll these register and check for 30s. If the HBM training is
* not complete or if the C2C link is not ready, fail the probe.
*
* While the wait is not required on Grace Hopper systems, it
* is beneficial to make the check to ensure the device is in an
* expected state.
*
* Ensure that the BAR0 region is enabled before accessing the
* registers.
*/
static int nvgrace_gpu_probe_check_device_ready(struct pci_dev *pdev)
{
void __iomem *io;
int ret;
ret = pci_enable_device(pdev);
if (ret)
return ret;
ret = pci_request_selected_regions(pdev, 1 << 0, KBUILD_MODNAME);
if (ret)
goto request_region_exit;
io = pci_iomap(pdev, 0, 0);
if (!io) {
ret = -ENOMEM;
goto iomap_exit;
}
ret = nvgrace_gpu_wait_device_ready(io);
pci_iounmap(pdev, io);
iomap_exit:
pci_release_selected_regions(pdev, 1 << 0);
request_region_exit:
pci_disable_device(pdev);
return ret;
}
static int nvgrace_gpu_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
const struct vfio_device_ops *ops = &nvgrace_gpu_pci_core_ops;
struct nvgrace_gpu_pci_core_device *nvdev;
u64 memphys, memlength;
int ret;
ret = nvgrace_gpu_probe_check_device_ready(pdev);
if (ret)
return ret;
ret = nvgrace_gpu_fetch_memory_property(pdev, &memphys, &memlength);
if (!ret)
ops = &nvgrace_gpu_pci_ops;
nvdev = vfio_alloc_device(nvgrace_gpu_pci_core_device, core_device.vdev,
&pdev->dev, ops);
if (IS_ERR(nvdev))
return PTR_ERR(nvdev);
dev_set_drvdata(&pdev->dev, &nvdev->core_device);
if (ops == &nvgrace_gpu_pci_ops) {
nvdev->has_mig_hw_bug = nvgrace_gpu_has_mig_hw_bug(pdev);
/*
* Device memory properties are identified in the host ACPI
* table. Set the nvgrace_gpu_pci_core_device structure.
*/
ret = nvgrace_gpu_init_nvdev_struct(pdev, nvdev,
memphys, memlength);
if (ret)
goto out_put_vdev;
nvdev->core_device.pci_ops = &nvgrace_gpu_pci_dev_ops;
} else {
nvdev->core_device.pci_ops = &nvgrace_gpu_pci_dev_core_ops;
}
ret = vfio_pci_core_register_device(&nvdev->core_device);
if (ret)
goto out_put_vdev;
return ret;
out_put_vdev:
vfio_put_device(&nvdev->core_device.vdev);
return ret;
}
static void nvgrace_gpu_remove(struct pci_dev *pdev)
{
struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
vfio_pci_core_unregister_device(core_device);
vfio_put_device(&core_device->vdev);
}
static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = {
/* GH200 120GB */
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) },
/* GH200 480GB */
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) },
/* GH200 SKU */
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2348) },
/* GB200 SKU */
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2941) },
/* GB300 SKU */
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x31C2) },
{}
};
MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table);
/*
* The GPU reset is required to be serialized against the *first* mapping
* faults and read/writes accesses to prevent potential RAS events logging.
*
* First fault or access after a reset needs to poll device readiness,
* flag that a reset has occurred. The readiness test is done by holding
* the memory_lock read lock and we expect all vfio-pci initiated resets to
* hold the memory_lock write lock to avoid races. However, .reset_done
* extends beyond the scope of vfio-pci initiated resets therefore we
* cannot assert this behavior and use lockdep_assert_held_write.
*/
static void nvgrace_gpu_vfio_pci_reset_done(struct pci_dev *pdev)
{
struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
struct nvgrace_gpu_pci_core_device *nvdev =
container_of(core_device, struct nvgrace_gpu_pci_core_device,
core_device);
nvdev->reset_done = true;
}
static const struct pci_error_handlers nvgrace_gpu_vfio_pci_err_handlers = {
.reset_done = nvgrace_gpu_vfio_pci_reset_done,
.error_detected = vfio_pci_core_aer_err_detected,
};
static struct pci_driver nvgrace_gpu_vfio_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = nvgrace_gpu_vfio_pci_table,
.probe = nvgrace_gpu_probe,
.remove = nvgrace_gpu_remove,
.err_handler = &nvgrace_gpu_vfio_pci_err_handlers,
.driver_managed_dma = true,
};
module_pci_driver(nvgrace_gpu_vfio_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ankit Agrawal <ankita@nvidia.com>");
MODULE_AUTHOR("Aniket Agashe <aniketa@nvidia.com>");
MODULE_DESCRIPTION("VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory");