Files
linux/arch/x86/crypto/aes-gcm-vaes-avx512.S
Eric Biggers 05794985b1 crypto: x86/aes-gcm - optimize long AAD processing with AVX512
Improve the performance of aes_gcm_aad_update_vaes_avx512() on large AAD
(additional authenticated data) lengths by 4-8 times by making it use up
to 512-bit vectors and a 4-vector-wide loop.  Previously, it used only
256-bit vectors and a 1-vector-wide loop.

Originally, I assumed that the case of large AADLEN was unimportant.
Later, when reviewing the users of BoringSSL's AES-GCM code, I found
that some callers use BoringSSL's AES-GCM API to just compute GMAC,
authenticating lots of data but not en/decrypting any.  Thus, I included
a similar optimization in the BoringSSL port of this code.  I believe
it's wise to include this optimization in the kernel port too for
similar reasons, and to align it more closely with the BoringSSL port.

Another reason this function originally used 256-bit vectors was so that
separate *_avx10_256 and *_avx10_512 versions of it wouldn't be needed.
However, that's no longer applicable.

To avoid a slight performance regression in the common case of AADLEN <=
16, also add a fast path for that case which uses 128-bit vectors.  In
fact, this case actually gets slightly faster too, since it saves a
couple instructions over the original 256-bit code.

Acked-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251002023117.37504-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
2025-10-26 20:37:41 -07:00

1164 lines
45 KiB
ArmAsm

/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
//
// AES-GCM implementation for x86_64 CPUs that support the following CPU
// features: VAES && VPCLMULQDQ && AVX512BW && AVX512VL && BMI2
//
// Copyright 2024 Google LLC
//
// Author: Eric Biggers <ebiggers@google.com>
//
//------------------------------------------------------------------------------
//
// This file is dual-licensed, meaning that you can use it under your choice of
// either of the following two licenses:
//
// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// or
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
#include <linux/linkage.h>
.section .rodata
.p2align 6
// A shuffle mask that reflects the bytes of 16-byte blocks
.Lbswap_mask:
.octa 0x000102030405060708090a0b0c0d0e0f
// This is the GHASH reducing polynomial without its constant term, i.e.
// x^128 + x^7 + x^2 + x, represented using the backwards mapping
// between bits and polynomial coefficients.
//
// Alternatively, it can be interpreted as the naturally-ordered
// representation of the polynomial x^127 + x^126 + x^121 + 1, i.e. the
// "reversed" GHASH reducing polynomial without its x^128 term.
.Lgfpoly:
.octa 0xc2000000000000000000000000000001
// Same as above, but with the (1 << 64) bit set.
.Lgfpoly_and_internal_carrybit:
.octa 0xc2000000000000010000000000000001
// Values needed to prepare the initial vector of counter blocks.
.Lctr_pattern:
.octa 0
.octa 1
.octa 2
.octa 3
// The number of AES blocks per vector, as a 128-bit value.
.Linc_4blocks:
.octa 4
// Number of powers of the hash key stored in the key struct. The powers are
// stored from highest (H^NUM_H_POWERS) to lowest (H^1).
#define NUM_H_POWERS 16
// Offset to AES key length (in bytes) in the key struct
#define OFFSETOF_AESKEYLEN 480
// Offset to start of hash key powers array in the key struct
#define OFFSETOF_H_POWERS 512
// Offset to end of hash key powers array in the key struct.
//
// This is immediately followed by three zeroized padding blocks, which are
// included so that partial vectors can be handled more easily. E.g. if two
// blocks remain, we load the 4 values [H^2, H^1, 0, 0]. The most padding
// blocks needed is 3, which occurs if [H^1, 0, 0, 0] is loaded.
#define OFFSETOFEND_H_POWERS (OFFSETOF_H_POWERS + (NUM_H_POWERS * 16))
.text
// The _ghash_mul_step macro does one step of GHASH multiplication of the
// 128-bit lanes of \a by the corresponding 128-bit lanes of \b and storing the
// reduced products in \dst. \t0, \t1, and \t2 are temporary registers of the
// same size as \a and \b. To complete all steps, this must invoked with \i=0
// through \i=9. The division into steps allows users of this macro to
// optionally interleave the computation with other instructions. Users of this
// macro must preserve the parameter registers across steps.
//
// The multiplications are done in GHASH's representation of the finite field
// GF(2^128). Elements of GF(2^128) are represented as binary polynomials
// (i.e. polynomials whose coefficients are bits) modulo a reducing polynomial
// G. The GCM specification uses G = x^128 + x^7 + x^2 + x + 1. Addition is
// just XOR, while multiplication is more complex and has two parts: (a) do
// carryless multiplication of two 128-bit input polynomials to get a 256-bit
// intermediate product polynomial, and (b) reduce the intermediate product to
// 128 bits by adding multiples of G that cancel out terms in it. (Adding
// multiples of G doesn't change which field element the polynomial represents.)
//
// Unfortunately, the GCM specification maps bits to/from polynomial
// coefficients backwards from the natural order. In each byte it specifies the
// highest bit to be the lowest order polynomial coefficient, *not* the highest!
// This makes it nontrivial to work with the GHASH polynomials. We could
// reflect the bits, but x86 doesn't have an instruction that does that.
//
// Instead, we operate on the values without bit-reflecting them. This *mostly*
// just works, since XOR and carryless multiplication are symmetric with respect
// to bit order, but it has some consequences. First, due to GHASH's byte
// order, by skipping bit reflection, *byte* reflection becomes necessary to
// give the polynomial terms a consistent order. E.g., considering an N-bit
// value interpreted using the G = x^128 + x^7 + x^2 + x + 1 convention, bits 0
// through N-1 of the byte-reflected value represent the coefficients of x^(N-1)
// through x^0, whereas bits 0 through N-1 of the non-byte-reflected value
// represent x^7...x^0, x^15...x^8, ..., x^(N-1)...x^(N-8) which can't be worked
// with. Fortunately, x86's vpshufb instruction can do byte reflection.
//
// Second, forgoing the bit reflection causes an extra multiple of x (still
// using the G = x^128 + x^7 + x^2 + x + 1 convention) to be introduced by each
// multiplication. This is because an M-bit by N-bit carryless multiplication
// really produces a (M+N-1)-bit product, but in practice it's zero-extended to
// M+N bits. In the G = x^128 + x^7 + x^2 + x + 1 convention, which maps bits
// to polynomial coefficients backwards, this zero-extension actually changes
// the product by introducing an extra factor of x. Therefore, users of this
// macro must ensure that one of the inputs has an extra factor of x^-1, i.e.
// the multiplicative inverse of x, to cancel out the extra x.
//
// Third, the backwards coefficients convention is just confusing to work with,
// since it makes "low" and "high" in the polynomial math mean the opposite of
// their normal meaning in computer programming. This can be solved by using an
// alternative interpretation: the polynomial coefficients are understood to be
// in the natural order, and the multiplication is actually \a * \b * x^-128 mod
// x^128 + x^127 + x^126 + x^121 + 1. This doesn't change the inputs, outputs,
// or the implementation at all; it just changes the mathematical interpretation
// of what each instruction is doing. Starting from here, we'll use this
// alternative interpretation, as it's easier to understand the code that way.
//
// Moving onto the implementation, the vpclmulqdq instruction does 64 x 64 =>
// 128-bit carryless multiplication, so we break the 128 x 128 multiplication
// into parts as follows (the _L and _H suffixes denote low and high 64 bits):
//
// LO = a_L * b_L
// MI = (a_L * b_H) + (a_H * b_L)
// HI = a_H * b_H
//
// The 256-bit product is x^128*HI + x^64*MI + LO. LO, MI, and HI are 128-bit.
// Note that MI "overlaps" with LO and HI. We don't consolidate MI into LO and
// HI right away, since the way the reduction works makes that unnecessary.
//
// For the reduction, we cancel out the low 128 bits by adding multiples of G =
// x^128 + x^127 + x^126 + x^121 + 1. This is done by two iterations, each of
// which cancels out the next lowest 64 bits. Consider a value x^64*A + B,
// where A and B are 128-bit. Adding B_L*G to that value gives:
//
// x^64*A + B + B_L*G
// = x^64*A + x^64*B_H + B_L + B_L*(x^128 + x^127 + x^126 + x^121 + 1)
// = x^64*A + x^64*B_H + B_L + x^128*B_L + x^64*B_L*(x^63 + x^62 + x^57) + B_L
// = x^64*A + x^64*B_H + x^128*B_L + x^64*B_L*(x^63 + x^62 + x^57) + B_L + B_L
// = x^64*(A + B_H + x^64*B_L + B_L*(x^63 + x^62 + x^57))
//
// So: if we sum A, B with its halves swapped, and the low half of B times x^63
// + x^62 + x^57, we get a 128-bit value C where x^64*C is congruent to the
// original value x^64*A + B. I.e., the low 64 bits got canceled out.
//
// We just need to apply this twice: first to fold LO into MI, and second to
// fold the updated MI into HI.
//
// The needed three-argument XORs are done using the vpternlogd instruction with
// immediate 0x96, since this is faster than two vpxord instructions.
//
// A potential optimization, assuming that b is fixed per-key (if a is fixed
// per-key it would work the other way around), is to use one iteration of the
// reduction described above to precompute a value c such that x^64*c = b mod G,
// and then multiply a_L by c (and implicitly by x^64) instead of by b:
//
// MI = (a_L * c_L) + (a_H * b_L)
// HI = (a_L * c_H) + (a_H * b_H)
//
// This would eliminate the LO part of the intermediate product, which would
// eliminate the need to fold LO into MI. This would save two instructions,
// including a vpclmulqdq. However, we currently don't use this optimization
// because it would require twice as many per-key precomputed values.
//
// Using Karatsuba multiplication instead of "schoolbook" multiplication
// similarly would save a vpclmulqdq but does not seem to be worth it.
.macro _ghash_mul_step i, a, b, dst, gfpoly, t0, t1, t2
.if \i == 0
vpclmulqdq $0x00, \a, \b, \t0 // LO = a_L * b_L
vpclmulqdq $0x01, \a, \b, \t1 // MI_0 = a_L * b_H
.elseif \i == 1
vpclmulqdq $0x10, \a, \b, \t2 // MI_1 = a_H * b_L
.elseif \i == 2
vpxord \t2, \t1, \t1 // MI = MI_0 + MI_1
.elseif \i == 3
vpclmulqdq $0x01, \t0, \gfpoly, \t2 // LO_L*(x^63 + x^62 + x^57)
.elseif \i == 4
vpshufd $0x4e, \t0, \t0 // Swap halves of LO
.elseif \i == 5
vpternlogd $0x96, \t2, \t0, \t1 // Fold LO into MI
.elseif \i == 6
vpclmulqdq $0x11, \a, \b, \dst // HI = a_H * b_H
.elseif \i == 7
vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
.elseif \i == 8
vpshufd $0x4e, \t1, \t1 // Swap halves of MI
.elseif \i == 9
vpternlogd $0x96, \t0, \t1, \dst // Fold MI into HI
.endif
.endm
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and store
// the reduced products in \dst. See _ghash_mul_step for full explanation.
.macro _ghash_mul a, b, dst, gfpoly, t0, t1, t2
.irp i, 0,1,2,3,4,5,6,7,8,9
_ghash_mul_step \i, \a, \b, \dst, \gfpoly, \t0, \t1, \t2
.endr
.endm
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and add the
// *unreduced* products to \lo, \mi, and \hi.
.macro _ghash_mul_noreduce a, b, lo, mi, hi, t0, t1, t2, t3
vpclmulqdq $0x00, \a, \b, \t0 // a_L * b_L
vpclmulqdq $0x01, \a, \b, \t1 // a_L * b_H
vpclmulqdq $0x10, \a, \b, \t2 // a_H * b_L
vpclmulqdq $0x11, \a, \b, \t3 // a_H * b_H
vpxord \t0, \lo, \lo
vpternlogd $0x96, \t2, \t1, \mi
vpxord \t3, \hi, \hi
.endm
// Reduce the unreduced products from \lo, \mi, and \hi and store the 128-bit
// reduced products in \hi. See _ghash_mul_step for explanation of reduction.
.macro _ghash_reduce lo, mi, hi, gfpoly, t0
vpclmulqdq $0x01, \lo, \gfpoly, \t0
vpshufd $0x4e, \lo, \lo
vpternlogd $0x96, \t0, \lo, \mi
vpclmulqdq $0x01, \mi, \gfpoly, \t0
vpshufd $0x4e, \mi, \mi
vpternlogd $0x96, \t0, \mi, \hi
.endm
// This is a specialized version of _ghash_mul that computes \a * \a, i.e. it
// squares \a. It skips computing MI = (a_L * a_H) + (a_H * a_L) = 0.
.macro _ghash_square a, dst, gfpoly, t0, t1
vpclmulqdq $0x00, \a, \a, \t0 // LO = a_L * a_L
vpclmulqdq $0x11, \a, \a, \dst // HI = a_H * a_H
vpclmulqdq $0x01, \t0, \gfpoly, \t1 // LO_L*(x^63 + x^62 + x^57)
vpshufd $0x4e, \t0, \t0 // Swap halves of LO
vpxord \t0, \t1, \t1 // Fold LO into MI
vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
vpshufd $0x4e, \t1, \t1 // Swap halves of MI
vpternlogd $0x96, \t0, \t1, \dst // Fold MI into HI
.endm
// void aes_gcm_precompute_vaes_avx512(struct aes_gcm_key_vaes_avx512 *key);
//
// Given the expanded AES key |key->base.aes_key|, derive the GHASH subkey and
// initialize |key->h_powers| and |key->padding|.
SYM_FUNC_START(aes_gcm_precompute_vaes_avx512)
// Function arguments
.set KEY, %rdi
// Additional local variables.
// %zmm[0-2] and %rax are used as temporaries.
.set POWERS_PTR, %rsi
.set RNDKEYLAST_PTR, %rdx
.set H_CUR, %zmm3
.set H_CUR_YMM, %ymm3
.set H_CUR_XMM, %xmm3
.set H_INC, %zmm4
.set H_INC_YMM, %ymm4
.set H_INC_XMM, %xmm4
.set GFPOLY, %zmm5
.set GFPOLY_YMM, %ymm5
.set GFPOLY_XMM, %xmm5
// Get pointer to lowest set of key powers (located at end of array).
lea OFFSETOFEND_H_POWERS-64(KEY), POWERS_PTR
// Encrypt an all-zeroes block to get the raw hash subkey.
movl OFFSETOF_AESKEYLEN(KEY), %eax
lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR
vmovdqu (KEY), %xmm0 // Zero-th round key XOR all-zeroes block
add $16, KEY
1:
vaesenc (KEY), %xmm0, %xmm0
add $16, KEY
cmp KEY, RNDKEYLAST_PTR
jne 1b
vaesenclast (RNDKEYLAST_PTR), %xmm0, %xmm0
// Reflect the bytes of the raw hash subkey.
vpshufb .Lbswap_mask(%rip), %xmm0, H_CUR_XMM
// Zeroize the padding blocks.
vpxor %xmm0, %xmm0, %xmm0
vmovdqu %ymm0, 64(POWERS_PTR)
vmovdqu %xmm0, 64+2*16(POWERS_PTR)
// Finish preprocessing the first key power, H^1. Since this GHASH
// implementation operates directly on values with the backwards bit
// order specified by the GCM standard, it's necessary to preprocess the
// raw key as follows. First, reflect its bytes. Second, multiply it
// by x^-1 mod x^128 + x^7 + x^2 + x + 1 (if using the backwards
// interpretation of polynomial coefficients), which can also be
// interpreted as multiplication by x mod x^128 + x^127 + x^126 + x^121
// + 1 using the alternative, natural interpretation of polynomial
// coefficients. For details, see the comment above _ghash_mul_step.
//
// Either way, for the multiplication the concrete operation performed
// is a left shift of the 128-bit value by 1 bit, then an XOR with (0xc2
// << 120) | 1 if a 1 bit was carried out. However, there's no 128-bit
// wide shift instruction, so instead double each of the two 64-bit
// halves and incorporate the internal carry bit into the value XOR'd.
vpshufd $0xd3, H_CUR_XMM, %xmm0
vpsrad $31, %xmm0, %xmm0
vpaddq H_CUR_XMM, H_CUR_XMM, H_CUR_XMM
// H_CUR_XMM ^= xmm0 & gfpoly_and_internal_carrybit
vpternlogd $0x78, .Lgfpoly_and_internal_carrybit(%rip), %xmm0, H_CUR_XMM
// Load the gfpoly constant.
vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
// Square H^1 to get H^2.
//
// Note that as with H^1, all higher key powers also need an extra
// factor of x^-1 (or x using the natural interpretation). Nothing
// special needs to be done to make this happen, though: H^1 * H^1 would
// end up with two factors of x^-1, but the multiplication consumes one.
// So the product H^2 ends up with the desired one factor of x^-1.
_ghash_square H_CUR_XMM, H_INC_XMM, GFPOLY_XMM, %xmm0, %xmm1
// Create H_CUR_YMM = [H^2, H^1] and H_INC_YMM = [H^2, H^2].
vinserti128 $1, H_CUR_XMM, H_INC_YMM, H_CUR_YMM
vinserti128 $1, H_INC_XMM, H_INC_YMM, H_INC_YMM
// Create H_CUR = [H^4, H^3, H^2, H^1] and H_INC = [H^4, H^4, H^4, H^4].
_ghash_mul H_INC_YMM, H_CUR_YMM, H_INC_YMM, GFPOLY_YMM, \
%ymm0, %ymm1, %ymm2
vinserti64x4 $1, H_CUR_YMM, H_INC, H_CUR
vshufi64x2 $0, H_INC, H_INC, H_INC
// Store the lowest set of key powers.
vmovdqu8 H_CUR, (POWERS_PTR)
// Compute and store the remaining key powers.
// Repeatedly multiply [H^(i+3), H^(i+2), H^(i+1), H^i] by
// [H^4, H^4, H^4, H^4] to get [H^(i+7), H^(i+6), H^(i+5), H^(i+4)].
mov $3, %eax
.Lprecompute_next:
sub $64, POWERS_PTR
_ghash_mul H_INC, H_CUR, H_CUR, GFPOLY, %zmm0, %zmm1, %zmm2
vmovdqu8 H_CUR, (POWERS_PTR)
dec %eax
jnz .Lprecompute_next
vzeroupper // This is needed after using ymm or zmm registers.
RET
SYM_FUNC_END(aes_gcm_precompute_vaes_avx512)
// XOR together the 128-bit lanes of \src (whose low lane is \src_xmm) and store
// the result in \dst_xmm. This implicitly zeroizes the other lanes of dst.
.macro _horizontal_xor src, src_xmm, dst_xmm, t0_xmm, t1_xmm, t2_xmm
vextracti32x4 $1, \src, \t0_xmm
vextracti32x4 $2, \src, \t1_xmm
vextracti32x4 $3, \src, \t2_xmm
vpxord \t0_xmm, \src_xmm, \dst_xmm
vpternlogd $0x96, \t1_xmm, \t2_xmm, \dst_xmm
.endm
// Do one step of the GHASH update of the data blocks given in the vector
// registers GHASHDATA[0-3]. \i specifies the step to do, 0 through 9. The
// division into steps allows users of this macro to optionally interleave the
// computation with other instructions. This macro uses the vector register
// GHASH_ACC as input/output; GHASHDATA[0-3] as inputs that are clobbered;
// H_POW[4-1], GFPOLY, and BSWAP_MASK as inputs that aren't clobbered; and
// GHASHTMP[0-2] as temporaries. This macro handles the byte-reflection of the
// data blocks. The parameter registers must be preserved across steps.
//
// The GHASH update does: GHASH_ACC = H_POW4*(GHASHDATA0 + GHASH_ACC) +
// H_POW3*GHASHDATA1 + H_POW2*GHASHDATA2 + H_POW1*GHASHDATA3, where the
// operations are vectorized operations on 512-bit vectors of 128-bit blocks.
// The vectorized terms correspond to the following non-vectorized terms:
//
// H_POW4*(GHASHDATA0 + GHASH_ACC) => H^16*(blk0 + GHASH_ACC_XMM),
// H^15*(blk1 + 0), H^14*(blk2 + 0), and H^13*(blk3 + 0)
// H_POW3*GHASHDATA1 => H^12*blk4, H^11*blk5, H^10*blk6, and H^9*blk7
// H_POW2*GHASHDATA2 => H^8*blk8, H^7*blk9, H^6*blk10, and H^5*blk11
// H_POW1*GHASHDATA3 => H^4*blk12, H^3*blk13, H^2*blk14, and H^1*blk15
//
// More concretely, this code does:
// - Do vectorized "schoolbook" multiplications to compute the intermediate
// 256-bit product of each block and its corresponding hash key power.
// - Sum (XOR) the intermediate 256-bit products across vectors.
// - Do a vectorized reduction of these 256-bit intermediate values to
// 128-bits each.
// - Sum (XOR) these values and store the 128-bit result in GHASH_ACC_XMM.
//
// See _ghash_mul_step for the full explanation of the operations performed for
// each individual finite field multiplication and reduction.
.macro _ghash_step_4x i
.if \i == 0
vpshufb BSWAP_MASK, GHASHDATA0, GHASHDATA0
vpxord GHASH_ACC, GHASHDATA0, GHASHDATA0
vpshufb BSWAP_MASK, GHASHDATA1, GHASHDATA1
vpshufb BSWAP_MASK, GHASHDATA2, GHASHDATA2
.elseif \i == 1
vpshufb BSWAP_MASK, GHASHDATA3, GHASHDATA3
vpclmulqdq $0x00, H_POW4, GHASHDATA0, GHASH_ACC // LO_0
vpclmulqdq $0x00, H_POW3, GHASHDATA1, GHASHTMP0 // LO_1
vpclmulqdq $0x00, H_POW2, GHASHDATA2, GHASHTMP1 // LO_2
.elseif \i == 2
vpxord GHASHTMP0, GHASH_ACC, GHASH_ACC // sum(LO_{1,0})
vpclmulqdq $0x00, H_POW1, GHASHDATA3, GHASHTMP2 // LO_3
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASH_ACC // LO = sum(LO_{3,2,1,0})
vpclmulqdq $0x01, H_POW4, GHASHDATA0, GHASHTMP0 // MI_0
.elseif \i == 3
vpclmulqdq $0x01, H_POW3, GHASHDATA1, GHASHTMP1 // MI_1
vpclmulqdq $0x01, H_POW2, GHASHDATA2, GHASHTMP2 // MI_2
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{2,1,0})
vpclmulqdq $0x01, H_POW1, GHASHDATA3, GHASHTMP1 // MI_3
.elseif \i == 4
vpclmulqdq $0x10, H_POW4, GHASHDATA0, GHASHTMP2 // MI_4
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{4,3,2,1,0})
vpclmulqdq $0x10, H_POW3, GHASHDATA1, GHASHTMP1 // MI_5
vpclmulqdq $0x10, H_POW2, GHASHDATA2, GHASHTMP2 // MI_6
.elseif \i == 5
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{6,5,4,3,2,1,0})
vpclmulqdq $0x01, GHASH_ACC, GFPOLY, GHASHTMP2 // LO_L*(x^63 + x^62 + x^57)
vpclmulqdq $0x10, H_POW1, GHASHDATA3, GHASHTMP1 // MI_7
vpxord GHASHTMP1, GHASHTMP0, GHASHTMP0 // MI = sum(MI_{7,6,5,4,3,2,1,0})
.elseif \i == 6
vpshufd $0x4e, GHASH_ACC, GHASH_ACC // Swap halves of LO
vpclmulqdq $0x11, H_POW4, GHASHDATA0, GHASHDATA0 // HI_0
vpclmulqdq $0x11, H_POW3, GHASHDATA1, GHASHDATA1 // HI_1
vpclmulqdq $0x11, H_POW2, GHASHDATA2, GHASHDATA2 // HI_2
.elseif \i == 7
vpternlogd $0x96, GHASHTMP2, GHASH_ACC, GHASHTMP0 // Fold LO into MI
vpclmulqdq $0x11, H_POW1, GHASHDATA3, GHASHDATA3 // HI_3
vpternlogd $0x96, GHASHDATA2, GHASHDATA1, GHASHDATA0 // sum(HI_{2,1,0})
vpclmulqdq $0x01, GHASHTMP0, GFPOLY, GHASHTMP1 // MI_L*(x^63 + x^62 + x^57)
.elseif \i == 8
vpxord GHASHDATA3, GHASHDATA0, GHASH_ACC // HI = sum(HI_{3,2,1,0})
vpshufd $0x4e, GHASHTMP0, GHASHTMP0 // Swap halves of MI
vpternlogd $0x96, GHASHTMP1, GHASHTMP0, GHASH_ACC // Fold MI into HI
.elseif \i == 9
_horizontal_xor GHASH_ACC, GHASH_ACC_XMM, GHASH_ACC_XMM, \
GHASHDATA0_XMM, GHASHDATA1_XMM, GHASHDATA2_XMM
.endif
.endm
// Update GHASH with four vectors of data blocks. See _ghash_step_4x for full
// explanation.
.macro _ghash_4x
.irp i, 0,1,2,3,4,5,6,7,8,9
_ghash_step_4x \i
.endr
.endm
// void aes_gcm_aad_update_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
// u8 ghash_acc[16],
// const u8 *aad, int aadlen);
//
// This function processes the AAD (Additional Authenticated Data) in GCM.
// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the
// data given by |aad| and |aadlen|. On the first call, |ghash_acc| must be all
// zeroes. |aadlen| must be a multiple of 16, except on the last call where it
// can be any length. The caller must do any buffering needed to ensure this.
//
// This handles large amounts of AAD efficiently, while also keeping overhead
// low for small amounts which is the common case. TLS and IPsec use less than
// one block of AAD, but (uncommonly) other use cases may use much more.
SYM_FUNC_START(aes_gcm_aad_update_vaes_avx512)
// Function arguments
.set KEY, %rdi
.set GHASH_ACC_PTR, %rsi
.set AAD, %rdx
.set AADLEN, %ecx
.set AADLEN64, %rcx // Zero-extend AADLEN before using!
// Additional local variables.
// %rax and %k1 are used as temporary registers.
.set GHASHDATA0, %zmm0
.set GHASHDATA0_XMM, %xmm0
.set GHASHDATA1, %zmm1
.set GHASHDATA1_XMM, %xmm1
.set GHASHDATA2, %zmm2
.set GHASHDATA2_XMM, %xmm2
.set GHASHDATA3, %zmm3
.set BSWAP_MASK, %zmm4
.set BSWAP_MASK_XMM, %xmm4
.set GHASH_ACC, %zmm5
.set GHASH_ACC_XMM, %xmm5
.set H_POW4, %zmm6
.set H_POW3, %zmm7
.set H_POW2, %zmm8
.set H_POW1, %zmm9
.set H_POW1_XMM, %xmm9
.set GFPOLY, %zmm10
.set GFPOLY_XMM, %xmm10
.set GHASHTMP0, %zmm11
.set GHASHTMP1, %zmm12
.set GHASHTMP2, %zmm13
// Load the GHASH accumulator.
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
// Check for the common case of AADLEN <= 16, as well as AADLEN == 0.
cmp $16, AADLEN
jg .Laad_more_than_16bytes
test AADLEN, AADLEN
jz .Laad_done
// Fast path: update GHASH with 1 <= AADLEN <= 16 bytes of AAD.
vmovdqu .Lbswap_mask(%rip), BSWAP_MASK_XMM
vmovdqu .Lgfpoly(%rip), GFPOLY_XMM
mov $-1, %eax
bzhi AADLEN, %eax, %eax
kmovd %eax, %k1
vmovdqu8 (AAD), GHASHDATA0_XMM{%k1}{z}
vmovdqu OFFSETOFEND_H_POWERS-16(KEY), H_POW1_XMM
vpshufb BSWAP_MASK_XMM, GHASHDATA0_XMM, GHASHDATA0_XMM
vpxor GHASHDATA0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
_ghash_mul H_POW1_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM, GFPOLY_XMM, \
GHASHDATA0_XMM, GHASHDATA1_XMM, GHASHDATA2_XMM
jmp .Laad_done
.Laad_more_than_16bytes:
vbroadcasti32x4 .Lbswap_mask(%rip), BSWAP_MASK
vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
// If AADLEN >= 256, update GHASH with 256 bytes of AAD at a time.
sub $256, AADLEN
jl .Laad_loop_4x_done
vmovdqu8 OFFSETOFEND_H_POWERS-4*64(KEY), H_POW4
vmovdqu8 OFFSETOFEND_H_POWERS-3*64(KEY), H_POW3
vmovdqu8 OFFSETOFEND_H_POWERS-2*64(KEY), H_POW2
vmovdqu8 OFFSETOFEND_H_POWERS-1*64(KEY), H_POW1
.Laad_loop_4x:
vmovdqu8 0*64(AAD), GHASHDATA0
vmovdqu8 1*64(AAD), GHASHDATA1
vmovdqu8 2*64(AAD), GHASHDATA2
vmovdqu8 3*64(AAD), GHASHDATA3
_ghash_4x
add $256, AAD
sub $256, AADLEN
jge .Laad_loop_4x
.Laad_loop_4x_done:
// If AADLEN >= 64, update GHASH with 64 bytes of AAD at a time.
add $192, AADLEN
jl .Laad_loop_1x_done
vmovdqu8 OFFSETOFEND_H_POWERS-1*64(KEY), H_POW1
.Laad_loop_1x:
vmovdqu8 (AAD), GHASHDATA0
vpshufb BSWAP_MASK, GHASHDATA0, GHASHDATA0
vpxord GHASHDATA0, GHASH_ACC, GHASH_ACC
_ghash_mul H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
GHASHDATA0, GHASHDATA1, GHASHDATA2
_horizontal_xor GHASH_ACC, GHASH_ACC_XMM, GHASH_ACC_XMM, \
GHASHDATA0_XMM, GHASHDATA1_XMM, GHASHDATA2_XMM
add $64, AAD
sub $64, AADLEN
jge .Laad_loop_1x
.Laad_loop_1x_done:
// Update GHASH with the remaining 0 <= AADLEN < 64 bytes of AAD.
add $64, AADLEN
jz .Laad_done
mov $-1, %rax
bzhi AADLEN64, %rax, %rax
kmovq %rax, %k1
vmovdqu8 (AAD), GHASHDATA0{%k1}{z}
neg AADLEN64
and $~15, AADLEN64 // -round_up(AADLEN, 16)
vmovdqu8 OFFSETOFEND_H_POWERS(KEY,AADLEN64), H_POW1
vpshufb BSWAP_MASK, GHASHDATA0, GHASHDATA0
vpxord GHASHDATA0, GHASH_ACC, GHASH_ACC
_ghash_mul H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
GHASHDATA0, GHASHDATA1, GHASHDATA2
_horizontal_xor GHASH_ACC, GHASH_ACC_XMM, GHASH_ACC_XMM, \
GHASHDATA0_XMM, GHASHDATA1_XMM, GHASHDATA2_XMM
.Laad_done:
// Store the updated GHASH accumulator back to memory.
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
vzeroupper // This is needed after using ymm or zmm registers.
RET
SYM_FUNC_END(aes_gcm_aad_update_vaes_avx512)
// Do one non-last round of AES encryption on the blocks in %zmm[0-3] using the
// round key that has been broadcast to all 128-bit lanes of \round_key.
.macro _vaesenc_4x round_key
vaesenc \round_key, %zmm0, %zmm0
vaesenc \round_key, %zmm1, %zmm1
vaesenc \round_key, %zmm2, %zmm2
vaesenc \round_key, %zmm3, %zmm3
.endm
// Start the AES encryption of four vectors of counter blocks.
.macro _ctr_begin_4x
// Increment LE_CTR four times to generate four vectors of little-endian
// counter blocks, swap each to big-endian, and store them in %zmm[0-3].
vpshufb BSWAP_MASK, LE_CTR, %zmm0
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, %zmm1
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, %zmm2
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, %zmm3
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
// AES "round zero": XOR in the zero-th round key.
vpxord RNDKEY0, %zmm0, %zmm0
vpxord RNDKEY0, %zmm1, %zmm1
vpxord RNDKEY0, %zmm2, %zmm2
vpxord RNDKEY0, %zmm3, %zmm3
.endm
// Do the last AES round for four vectors of counter blocks %zmm[0-3], XOR
// source data with the resulting keystream, and write the result to DST and
// GHASHDATA[0-3]. (Implementation differs slightly, but has the same effect.)
.macro _aesenclast_and_xor_4x
// XOR the source data with the last round key, saving the result in
// GHASHDATA[0-3]. This reduces latency by taking advantage of the
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a).
vpxord 0*64(SRC), RNDKEYLAST, GHASHDATA0
vpxord 1*64(SRC), RNDKEYLAST, GHASHDATA1
vpxord 2*64(SRC), RNDKEYLAST, GHASHDATA2
vpxord 3*64(SRC), RNDKEYLAST, GHASHDATA3
// Do the last AES round. This handles the XOR with the source data
// too, as per the optimization described above.
vaesenclast GHASHDATA0, %zmm0, GHASHDATA0
vaesenclast GHASHDATA1, %zmm1, GHASHDATA1
vaesenclast GHASHDATA2, %zmm2, GHASHDATA2
vaesenclast GHASHDATA3, %zmm3, GHASHDATA3
// Store the en/decrypted data to DST.
vmovdqu8 GHASHDATA0, 0*64(DST)
vmovdqu8 GHASHDATA1, 1*64(DST)
vmovdqu8 GHASHDATA2, 2*64(DST)
vmovdqu8 GHASHDATA3, 3*64(DST)
.endm
// void aes_gcm_{enc,dec}_update_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
// const u32 le_ctr[4], u8 ghash_acc[16],
// const u8 *src, u8 *dst, int datalen);
//
// This macro generates a GCM encryption or decryption update function with the
// above prototype (with \enc selecting which one). The function computes the
// next portion of the CTR keystream, XOR's it with |datalen| bytes from |src|,
// and writes the resulting encrypted or decrypted data to |dst|. It also
// updates the GHASH accumulator |ghash_acc| using the next |datalen| ciphertext
// bytes.
//
// |datalen| must be a multiple of 16, except on the last call where it can be
// any length. The caller must do any buffering needed to ensure this. Both
// in-place and out-of-place en/decryption are supported.
//
// |le_ctr| must give the current counter in little-endian format. This
// function loads the counter from |le_ctr| and increments the loaded counter as
// needed, but it does *not* store the updated counter back to |le_ctr|. The
// caller must update |le_ctr| if any more data segments follow. Internally,
// only the low 32-bit word of the counter is incremented, following the GCM
// standard.
.macro _aes_gcm_update enc
// Function arguments
.set KEY, %rdi
.set LE_CTR_PTR, %rsi
.set GHASH_ACC_PTR, %rdx
.set SRC, %rcx
.set DST, %r8
.set DATALEN, %r9d
.set DATALEN64, %r9 // Zero-extend DATALEN before using!
// Additional local variables
// %rax and %k1 are used as temporary registers. LE_CTR_PTR is also
// available as a temporary register after the counter is loaded.
// AES key length in bytes
.set AESKEYLEN, %r10d
.set AESKEYLEN64, %r10
// Pointer to the last AES round key for the chosen AES variant
.set RNDKEYLAST_PTR, %r11
// In the main loop, %zmm[0-3] are used as AES input and output.
// Elsewhere they are used as temporary registers.
// GHASHDATA[0-3] hold the ciphertext blocks and GHASH input data.
.set GHASHDATA0, %zmm4
.set GHASHDATA0_XMM, %xmm4
.set GHASHDATA1, %zmm5
.set GHASHDATA1_XMM, %xmm5
.set GHASHDATA2, %zmm6
.set GHASHDATA2_XMM, %xmm6
.set GHASHDATA3, %zmm7
// BSWAP_MASK is the shuffle mask for byte-reflecting 128-bit values
// using vpshufb, copied to all 128-bit lanes.
.set BSWAP_MASK, %zmm8
// RNDKEY temporarily holds the next AES round key.
.set RNDKEY, %zmm9
// GHASH_ACC is the accumulator variable for GHASH. When fully reduced,
// only the lowest 128-bit lane can be nonzero. When not fully reduced,
// more than one lane may be used, and they need to be XOR'd together.
.set GHASH_ACC, %zmm10
.set GHASH_ACC_XMM, %xmm10
// LE_CTR_INC is the vector of 32-bit words that need to be added to a
// vector of little-endian counter blocks to advance it forwards.
.set LE_CTR_INC, %zmm11
// LE_CTR contains the next set of little-endian counter blocks.
.set LE_CTR, %zmm12
// RNDKEY0, RNDKEYLAST, and RNDKEY_M[9-1] contain cached AES round keys,
// copied to all 128-bit lanes. RNDKEY0 is the zero-th round key,
// RNDKEYLAST the last, and RNDKEY_M\i the one \i-th from the last.
.set RNDKEY0, %zmm13
.set RNDKEYLAST, %zmm14
.set RNDKEY_M9, %zmm15
.set RNDKEY_M8, %zmm16
.set RNDKEY_M7, %zmm17
.set RNDKEY_M6, %zmm18
.set RNDKEY_M5, %zmm19
.set RNDKEY_M4, %zmm20
.set RNDKEY_M3, %zmm21
.set RNDKEY_M2, %zmm22
.set RNDKEY_M1, %zmm23
// GHASHTMP[0-2] are temporary variables used by _ghash_step_4x. These
// cannot coincide with anything used for AES encryption, since for
// performance reasons GHASH and AES encryption are interleaved.
.set GHASHTMP0, %zmm24
.set GHASHTMP1, %zmm25
.set GHASHTMP2, %zmm26
// H_POW[4-1] contain the powers of the hash key H^16...H^1. The
// descending numbering reflects the order of the key powers.
.set H_POW4, %zmm27
.set H_POW3, %zmm28
.set H_POW2, %zmm29
.set H_POW1, %zmm30
// GFPOLY contains the .Lgfpoly constant, copied to all 128-bit lanes.
.set GFPOLY, %zmm31
// Load some constants.
vbroadcasti32x4 .Lbswap_mask(%rip), BSWAP_MASK
vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
// Load the GHASH accumulator and the starting counter.
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
vbroadcasti32x4 (LE_CTR_PTR), LE_CTR
// Load the AES key length in bytes.
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
// Make RNDKEYLAST_PTR point to the last AES round key. This is the
// round key with index 10, 12, or 14 for AES-128, AES-192, or AES-256
// respectively. Then load the zero-th and last round keys.
lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR
vbroadcasti32x4 (KEY), RNDKEY0
vbroadcasti32x4 (RNDKEYLAST_PTR), RNDKEYLAST
// Finish initializing LE_CTR by adding [0, 1, ...] to its low words.
vpaddd .Lctr_pattern(%rip), LE_CTR, LE_CTR
// Load 4 into all 128-bit lanes of LE_CTR_INC.
vbroadcasti32x4 .Linc_4blocks(%rip), LE_CTR_INC
// If there are at least 256 bytes of data, then continue into the loop
// that processes 256 bytes of data at a time. Otherwise skip it.
//
// Pre-subtracting 256 from DATALEN saves an instruction from the main
// loop and also ensures that at least one write always occurs to
// DATALEN, zero-extending it and allowing DATALEN64 to be used later.
sub $256, DATALEN
jl .Lcrypt_loop_4x_done\@
// Load powers of the hash key.
vmovdqu8 OFFSETOFEND_H_POWERS-4*64(KEY), H_POW4
vmovdqu8 OFFSETOFEND_H_POWERS-3*64(KEY), H_POW3
vmovdqu8 OFFSETOFEND_H_POWERS-2*64(KEY), H_POW2
vmovdqu8 OFFSETOFEND_H_POWERS-1*64(KEY), H_POW1
// Main loop: en/decrypt and hash 4 vectors at a time.
//
// When possible, interleave the AES encryption of the counter blocks
// with the GHASH update of the ciphertext blocks. This improves
// performance on many CPUs because the execution ports used by the VAES
// instructions often differ from those used by vpclmulqdq and other
// instructions used in GHASH. For example, many Intel CPUs dispatch
// vaesenc to ports 0 and 1 and vpclmulqdq to port 5.
//
// The interleaving is easiest to do during decryption, since during
// decryption the ciphertext blocks are immediately available. For
// encryption, instead encrypt the first set of blocks, then hash those
// blocks while encrypting the next set of blocks, repeat that as
// needed, and finally hash the last set of blocks.
.if \enc
// Encrypt the first 4 vectors of plaintext blocks. Leave the resulting
// ciphertext in GHASHDATA[0-3] for GHASH.
_ctr_begin_4x
lea 16(KEY), %rax
1:
vbroadcasti32x4 (%rax), RNDKEY
_vaesenc_4x RNDKEY
add $16, %rax
cmp %rax, RNDKEYLAST_PTR
jne 1b
_aesenclast_and_xor_4x
add $256, SRC
add $256, DST
sub $256, DATALEN
jl .Lghash_last_ciphertext_4x\@
.endif
// Cache as many additional AES round keys as possible.
.irp i, 9,8,7,6,5,4,3,2,1
vbroadcasti32x4 -\i*16(RNDKEYLAST_PTR), RNDKEY_M\i
.endr
.Lcrypt_loop_4x\@:
// If decrypting, load more ciphertext blocks into GHASHDATA[0-3]. If
// encrypting, GHASHDATA[0-3] already contain the previous ciphertext.
.if !\enc
vmovdqu8 0*64(SRC), GHASHDATA0
vmovdqu8 1*64(SRC), GHASHDATA1
vmovdqu8 2*64(SRC), GHASHDATA2
vmovdqu8 3*64(SRC), GHASHDATA3
.endif
// Start the AES encryption of the counter blocks.
_ctr_begin_4x
cmp $24, AESKEYLEN
jl 128f // AES-128?
je 192f // AES-192?
// AES-256
vbroadcasti32x4 -13*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
vbroadcasti32x4 -12*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
192:
vbroadcasti32x4 -11*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
vbroadcasti32x4 -10*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
128:
// Finish the AES encryption of the counter blocks in %zmm[0-3],
// interleaved with the GHASH update of the ciphertext blocks in
// GHASHDATA[0-3].
.irp i, 9,8,7,6,5,4,3,2,1
_ghash_step_4x (9 - \i)
_vaesenc_4x RNDKEY_M\i
.endr
_ghash_step_4x 9
_aesenclast_and_xor_4x
add $256, SRC
add $256, DST
sub $256, DATALEN
jge .Lcrypt_loop_4x\@
.if \enc
.Lghash_last_ciphertext_4x\@:
// Update GHASH with the last set of ciphertext blocks.
_ghash_4x
.endif
.Lcrypt_loop_4x_done\@:
// Undo the extra subtraction by 256 and check whether data remains.
add $256, DATALEN
jz .Ldone\@
// The data length isn't a multiple of 256 bytes. Process the remaining
// data of length 1 <= DATALEN < 256, up to one 64-byte vector at a
// time. Going one vector at a time may seem inefficient compared to
// having separate code paths for each possible number of vectors
// remaining. However, using a loop keeps the code size down, and it
// performs surprising well; modern CPUs will start executing the next
// iteration before the previous one finishes and also predict the
// number of loop iterations. For a similar reason, we roll up the AES
// rounds.
//
// On the last iteration, the remaining length may be less than 64
// bytes. Handle this using masking.
//
// Since there are enough key powers available for all remaining data,
// there is no need to do a GHASH reduction after each iteration.
// Instead, multiply each remaining block by its own key power, and only
// do a GHASH reduction at the very end.
// Make POWERS_PTR point to the key powers [H^N, H^(N-1), ...] where N
// is the number of blocks that remain.
.set POWERS_PTR, LE_CTR_PTR // LE_CTR_PTR is free to be reused.
mov DATALEN, %eax
neg %rax
and $~15, %rax // -round_up(DATALEN, 16)
lea OFFSETOFEND_H_POWERS(KEY,%rax), POWERS_PTR
// Start collecting the unreduced GHASH intermediate value LO, MI, HI.
.set LO, GHASHDATA0
.set LO_XMM, GHASHDATA0_XMM
.set MI, GHASHDATA1
.set MI_XMM, GHASHDATA1_XMM
.set HI, GHASHDATA2
.set HI_XMM, GHASHDATA2_XMM
vpxor LO_XMM, LO_XMM, LO_XMM
vpxor MI_XMM, MI_XMM, MI_XMM
vpxor HI_XMM, HI_XMM, HI_XMM
.Lcrypt_loop_1x\@:
// Select the appropriate mask for this iteration: all 1's if
// DATALEN >= 64, otherwise DATALEN 1's. Do this branchlessly using the
// bzhi instruction from BMI2. (This relies on DATALEN <= 255.)
mov $-1, %rax
bzhi DATALEN64, %rax, %rax
kmovq %rax, %k1
// Encrypt a vector of counter blocks. This does not need to be masked.
vpshufb BSWAP_MASK, LE_CTR, %zmm0
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpxord RNDKEY0, %zmm0, %zmm0
lea 16(KEY), %rax
1:
vbroadcasti32x4 (%rax), RNDKEY
vaesenc RNDKEY, %zmm0, %zmm0
add $16, %rax
cmp %rax, RNDKEYLAST_PTR
jne 1b
vaesenclast RNDKEYLAST, %zmm0, %zmm0
// XOR the data with the appropriate number of keystream bytes.
vmovdqu8 (SRC), %zmm1{%k1}{z}
vpxord %zmm1, %zmm0, %zmm0
vmovdqu8 %zmm0, (DST){%k1}
// Update GHASH with the ciphertext block(s), without reducing.
//
// In the case of DATALEN < 64, the ciphertext is zero-padded to 64
// bytes. (If decrypting, it's done by the above masked load. If
// encrypting, it's done by the below masked register-to-register move.)
// Note that if DATALEN <= 48, there will be additional padding beyond
// the padding of the last block specified by GHASH itself; i.e., there
// may be whole block(s) that get processed by the GHASH multiplication
// and reduction instructions but should not actually be included in the
// GHASH. However, any such blocks are all-zeroes, and the values that
// they're multiplied with are also all-zeroes. Therefore they just add
// 0 * 0 = 0 to the final GHASH result, which makes no difference.
vmovdqu8 (POWERS_PTR), H_POW1
.if \enc
vmovdqu8 %zmm0, %zmm1{%k1}{z}
.endif
vpshufb BSWAP_MASK, %zmm1, %zmm0
vpxord GHASH_ACC, %zmm0, %zmm0
_ghash_mul_noreduce H_POW1, %zmm0, LO, MI, HI, \
GHASHDATA3, %zmm1, %zmm2, %zmm3
vpxor GHASH_ACC_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
add $64, POWERS_PTR
add $64, SRC
add $64, DST
sub $64, DATALEN
jg .Lcrypt_loop_1x\@
// Finally, do the GHASH reduction.
_ghash_reduce LO, MI, HI, GFPOLY, %zmm0
_horizontal_xor HI, HI_XMM, GHASH_ACC_XMM, %xmm0, %xmm1, %xmm2
.Ldone\@:
// Store the updated GHASH accumulator back to memory.
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
vzeroupper // This is needed after using ymm or zmm registers.
RET
.endm
// void aes_gcm_enc_final_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
// const u32 le_ctr[4], u8 ghash_acc[16],
// u64 total_aadlen, u64 total_datalen);
// bool aes_gcm_dec_final_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
// const u32 le_ctr[4],
// const u8 ghash_acc[16],
// u64 total_aadlen, u64 total_datalen,
// const u8 tag[16], int taglen);
//
// This macro generates one of the above two functions (with \enc selecting
// which one). Both functions finish computing the GCM authentication tag by
// updating GHASH with the lengths block and encrypting the GHASH accumulator.
// |total_aadlen| and |total_datalen| must be the total length of the additional
// authenticated data and the en/decrypted data in bytes, respectively.
//
// The encryption function then stores the full-length (16-byte) computed
// authentication tag to |ghash_acc|. The decryption function instead loads the
// expected authentication tag (the one that was transmitted) from the 16-byte
// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the
// computed tag in constant time, and returns true if and only if they match.
.macro _aes_gcm_final enc
// Function arguments
.set KEY, %rdi
.set LE_CTR_PTR, %rsi
.set GHASH_ACC_PTR, %rdx
.set TOTAL_AADLEN, %rcx
.set TOTAL_DATALEN, %r8
.set TAG, %r9
.set TAGLEN, %r10d // Originally at 8(%rsp)
// Additional local variables.
// %rax, %xmm0-%xmm3, and %k1 are used as temporary registers.
.set AESKEYLEN, %r11d
.set AESKEYLEN64, %r11
.set GFPOLY, %xmm4
.set BSWAP_MASK, %xmm5
.set LE_CTR, %xmm6
.set GHASH_ACC, %xmm7
.set H_POW1, %xmm8
// Load some constants.
vmovdqa .Lgfpoly(%rip), GFPOLY
vmovdqa .Lbswap_mask(%rip), BSWAP_MASK
// Load the AES key length in bytes.
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
// Set up a counter block with 1 in the low 32-bit word. This is the
// counter that produces the ciphertext needed to encrypt the auth tag.
// GFPOLY has 1 in the low word, so grab the 1 from there using a blend.
vpblendd $0xe, (LE_CTR_PTR), GFPOLY, LE_CTR
// Build the lengths block and XOR it with the GHASH accumulator.
// Although the lengths block is defined as the AAD length followed by
// the en/decrypted data length, both in big-endian byte order, a byte
// reflection of the full block is needed because of the way we compute
// GHASH (see _ghash_mul_step). By using little-endian values in the
// opposite order, we avoid having to reflect any bytes here.
vmovq TOTAL_DATALEN, %xmm0
vpinsrq $1, TOTAL_AADLEN, %xmm0, %xmm0
vpsllq $3, %xmm0, %xmm0 // Bytes to bits
vpxor (GHASH_ACC_PTR), %xmm0, GHASH_ACC
// Load the first hash key power (H^1), which is stored last.
vmovdqu8 OFFSETOFEND_H_POWERS-16(KEY), H_POW1
.if !\enc
// Prepare a mask of TAGLEN one bits.
movl 8(%rsp), TAGLEN
mov $-1, %eax
bzhi TAGLEN, %eax, %eax
kmovd %eax, %k1
.endif
// Make %rax point to the last AES round key for the chosen AES variant.
lea 6*16(KEY,AESKEYLEN64,4), %rax
// Start the AES encryption of the counter block by swapping the counter
// block to big-endian and XOR-ing it with the zero-th AES round key.
vpshufb BSWAP_MASK, LE_CTR, %xmm0
vpxor (KEY), %xmm0, %xmm0
// Complete the AES encryption and multiply GHASH_ACC by H^1.
// Interleave the AES and GHASH instructions to improve performance.
cmp $24, AESKEYLEN
jl 128f // AES-128?
je 192f // AES-192?
// AES-256
vaesenc -13*16(%rax), %xmm0, %xmm0
vaesenc -12*16(%rax), %xmm0, %xmm0
192:
vaesenc -11*16(%rax), %xmm0, %xmm0
vaesenc -10*16(%rax), %xmm0, %xmm0
128:
.irp i, 0,1,2,3,4,5,6,7,8
_ghash_mul_step \i, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
%xmm1, %xmm2, %xmm3
vaesenc (\i-9)*16(%rax), %xmm0, %xmm0
.endr
_ghash_mul_step 9, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
%xmm1, %xmm2, %xmm3
// Undo the byte reflection of the GHASH accumulator.
vpshufb BSWAP_MASK, GHASH_ACC, GHASH_ACC
// Do the last AES round and XOR the resulting keystream block with the
// GHASH accumulator to produce the full computed authentication tag.
//
// Reduce latency by taking advantage of the property vaesenclast(key,
// a) ^ b == vaesenclast(key ^ b, a). I.e., XOR GHASH_ACC into the last
// round key, instead of XOR'ing the final AES output with GHASH_ACC.
//
// enc_final then returns the computed auth tag, while dec_final
// compares it with the transmitted one and returns a bool. To compare
// the tags, dec_final XORs them together and uses vptest to check
// whether the result is all-zeroes. This should be constant-time.
// dec_final applies the vaesenclast optimization to this additional
// value XOR'd too, using vpternlogd to XOR the last round key, GHASH
// accumulator, and transmitted auth tag together in one instruction.
.if \enc
vpxor (%rax), GHASH_ACC, %xmm1
vaesenclast %xmm1, %xmm0, GHASH_ACC
vmovdqu GHASH_ACC, (GHASH_ACC_PTR)
.else
vmovdqu (TAG), %xmm1
vpternlogd $0x96, (%rax), GHASH_ACC, %xmm1
vaesenclast %xmm1, %xmm0, %xmm0
xor %eax, %eax
vmovdqu8 %xmm0, %xmm0{%k1}{z} // Truncate to TAGLEN bytes
vptest %xmm0, %xmm0
sete %al
.endif
// No need for vzeroupper here, since only used xmm registers were used.
RET
.endm
SYM_FUNC_START(aes_gcm_enc_update_vaes_avx512)
_aes_gcm_update 1
SYM_FUNC_END(aes_gcm_enc_update_vaes_avx512)
SYM_FUNC_START(aes_gcm_dec_update_vaes_avx512)
_aes_gcm_update 0
SYM_FUNC_END(aes_gcm_dec_update_vaes_avx512)
SYM_FUNC_START(aes_gcm_enc_final_vaes_avx512)
_aes_gcm_final 1
SYM_FUNC_END(aes_gcm_enc_final_vaes_avx512)
SYM_FUNC_START(aes_gcm_dec_final_vaes_avx512)
_aes_gcm_final 0
SYM_FUNC_END(aes_gcm_dec_final_vaes_avx512)