Files
linux/arch/x86/crypto/aes-gcm-vaes-avx2.S
Eric Biggers 0e253e250e crypto: x86/aes-gcm-vaes-avx2 - initialize full %rax return register
Update aes_gcm_dec_final_vaes_avx2() to be consistent with
aes_gcm_dec_final_aesni() and aes_gcm_dec_final_vaes_avx512() by
initializing the full %rax return register instead of just %al.
Technically this is unnecessary, since these functions return bool.  But
I think it's worth being extra careful with the result of the tag
comparison and also keeping the different implementations consistent.

Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251102015256.171536-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
2025-11-03 09:07:57 -08:00

1147 lines
38 KiB
ArmAsm

/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
//
// AES-GCM implementation for x86_64 CPUs that support the following CPU
// features: VAES && VPCLMULQDQ && AVX2
//
// Copyright 2025 Google LLC
//
// Author: Eric Biggers <ebiggers@google.com>
//
//------------------------------------------------------------------------------
//
// This file is dual-licensed, meaning that you can use it under your choice of
// either of the following two licenses:
//
// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// or
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// -----------------------------------------------------------------------------
//
// This is similar to aes-gcm-vaes-avx512.S, but it uses AVX2 instead of AVX512.
// This means it can only use 16 vector registers instead of 32, the maximum
// vector length is 32 bytes, and some instructions such as vpternlogd and
// masked loads/stores are unavailable. However, it is able to run on CPUs that
// have VAES without AVX512, namely AMD Zen 3 (including "Milan" server CPUs),
// various Intel client CPUs such as Alder Lake, and Intel Sierra Forest.
//
// This implementation also uses Karatsuba multiplication instead of schoolbook
// multiplication for GHASH in its main loop. This does not help much on Intel,
// but it improves performance by ~5% on AMD Zen 3. Other factors weighing
// slightly in favor of Karatsuba multiplication in this implementation are the
// lower maximum vector length (which means there are fewer key powers, so we
// can cache the halves of each key power XOR'd together and still use less
// memory than the AVX512 implementation), and the unavailability of the
// vpternlogd instruction (which helped schoolbook a bit more than Karatsuba).
#include <linux/linkage.h>
.section .rodata
.p2align 4
// The below three 16-byte values must be in the order that they are, as
// they are really two 32-byte tables and a 16-byte value that overlap:
//
// - The first 32-byte table begins at .Lselect_high_bytes_table.
// For 0 <= len <= 16, the 16-byte value at
// '.Lselect_high_bytes_table + len' selects the high 'len' bytes of
// another 16-byte value when AND'ed with it.
//
// - The second 32-byte table begins at .Lrshift_and_bswap_table.
// For 0 <= len <= 16, the 16-byte value at
// '.Lrshift_and_bswap_table + len' is a vpshufb mask that does the
// following operation: right-shift by '16 - len' bytes (shifting in
// zeroes), then reflect all 16 bytes.
//
// - The 16-byte value at .Lbswap_mask is a vpshufb mask that reflects
// all 16 bytes.
.Lselect_high_bytes_table:
.octa 0
.Lrshift_and_bswap_table:
.octa 0xffffffffffffffffffffffffffffffff
.Lbswap_mask:
.octa 0x000102030405060708090a0b0c0d0e0f
// Sixteen 0x0f bytes. By XOR'ing an entry of .Lrshift_and_bswap_table
// with this, we get a mask that left-shifts by '16 - len' bytes.
.Lfifteens:
.octa 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f
// This is the GHASH reducing polynomial without its constant term, i.e.
// x^128 + x^7 + x^2 + x, represented using the backwards mapping
// between bits and polynomial coefficients.
//
// Alternatively, it can be interpreted as the naturally-ordered
// representation of the polynomial x^127 + x^126 + x^121 + 1, i.e. the
// "reversed" GHASH reducing polynomial without its x^128 term.
.Lgfpoly:
.octa 0xc2000000000000000000000000000001
// Same as above, but with the (1 << 64) bit set.
.Lgfpoly_and_internal_carrybit:
.octa 0xc2000000000000010000000000000001
// Values needed to prepare the initial vector of counter blocks.
.Lctr_pattern:
.octa 0
.octa 1
// The number of AES blocks per vector, as a 128-bit value.
.Linc_2blocks:
.octa 2
// Offsets in struct aes_gcm_key_vaes_avx2
#define OFFSETOF_AESKEYLEN 480
#define OFFSETOF_H_POWERS 512
#define NUM_H_POWERS 8
#define OFFSETOFEND_H_POWERS (OFFSETOF_H_POWERS + (NUM_H_POWERS * 16))
#define OFFSETOF_H_POWERS_XORED OFFSETOFEND_H_POWERS
.text
// Do one step of GHASH-multiplying the 128-bit lanes of \a by the 128-bit lanes
// of \b and storing the reduced products in \dst. Uses schoolbook
// multiplication.
.macro _ghash_mul_step i, a, b, dst, gfpoly, t0, t1, t2
.if \i == 0
vpclmulqdq $0x00, \a, \b, \t0 // LO = a_L * b_L
vpclmulqdq $0x01, \a, \b, \t1 // MI_0 = a_L * b_H
.elseif \i == 1
vpclmulqdq $0x10, \a, \b, \t2 // MI_1 = a_H * b_L
.elseif \i == 2
vpxor \t2, \t1, \t1 // MI = MI_0 + MI_1
.elseif \i == 3
vpclmulqdq $0x01, \t0, \gfpoly, \t2 // LO_L*(x^63 + x^62 + x^57)
.elseif \i == 4
vpshufd $0x4e, \t0, \t0 // Swap halves of LO
.elseif \i == 5
vpxor \t0, \t1, \t1 // Fold LO into MI (part 1)
vpxor \t2, \t1, \t1 // Fold LO into MI (part 2)
.elseif \i == 6
vpclmulqdq $0x11, \a, \b, \dst // HI = a_H * b_H
.elseif \i == 7
vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
.elseif \i == 8
vpshufd $0x4e, \t1, \t1 // Swap halves of MI
.elseif \i == 9
vpxor \t1, \dst, \dst // Fold MI into HI (part 1)
vpxor \t0, \dst, \dst // Fold MI into HI (part 2)
.endif
.endm
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and store
// the reduced products in \dst. See _ghash_mul_step for full explanation.
.macro _ghash_mul a, b, dst, gfpoly, t0, t1, t2
.irp i, 0,1,2,3,4,5,6,7,8,9
_ghash_mul_step \i, \a, \b, \dst, \gfpoly, \t0, \t1, \t2
.endr
.endm
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and add the
// *unreduced* products to \lo, \mi, and \hi.
.macro _ghash_mul_noreduce a, b, lo, mi, hi, t0
vpclmulqdq $0x00, \a, \b, \t0 // a_L * b_L
vpxor \t0, \lo, \lo
vpclmulqdq $0x01, \a, \b, \t0 // a_L * b_H
vpxor \t0, \mi, \mi
vpclmulqdq $0x10, \a, \b, \t0 // a_H * b_L
vpxor \t0, \mi, \mi
vpclmulqdq $0x11, \a, \b, \t0 // a_H * b_H
vpxor \t0, \hi, \hi
.endm
// Reduce the unreduced products from \lo, \mi, and \hi and store the 128-bit
// reduced products in \hi. See _ghash_mul_step for explanation of reduction.
.macro _ghash_reduce lo, mi, hi, gfpoly, t0
vpclmulqdq $0x01, \lo, \gfpoly, \t0
vpshufd $0x4e, \lo, \lo
vpxor \lo, \mi, \mi
vpxor \t0, \mi, \mi
vpclmulqdq $0x01, \mi, \gfpoly, \t0
vpshufd $0x4e, \mi, \mi
vpxor \mi, \hi, \hi
vpxor \t0, \hi, \hi
.endm
// This is a specialized version of _ghash_mul that computes \a * \a, i.e. it
// squares \a. It skips computing MI = (a_L * a_H) + (a_H * a_L) = 0.
.macro _ghash_square a, dst, gfpoly, t0, t1
vpclmulqdq $0x00, \a, \a, \t0 // LO = a_L * a_L
vpclmulqdq $0x11, \a, \a, \dst // HI = a_H * a_H
vpclmulqdq $0x01, \t0, \gfpoly, \t1 // LO_L*(x^63 + x^62 + x^57)
vpshufd $0x4e, \t0, \t0 // Swap halves of LO
vpxor \t0, \t1, \t1 // Fold LO into MI
vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
vpshufd $0x4e, \t1, \t1 // Swap halves of MI
vpxor \t1, \dst, \dst // Fold MI into HI (part 1)
vpxor \t0, \dst, \dst // Fold MI into HI (part 2)
.endm
// void aes_gcm_precompute_vaes_avx2(struct aes_gcm_key_vaes_avx2 *key);
//
// Given the expanded AES key |key->base.aes_key|, derive the GHASH subkey and
// initialize |key->h_powers| and |key->h_powers_xored|.
//
// We use h_powers[0..7] to store H^8 through H^1, and h_powers_xored[0..7] to
// store the 64-bit halves of the key powers XOR'd together (for Karatsuba
// multiplication) in the order 8,6,7,5,4,2,3,1.
SYM_FUNC_START(aes_gcm_precompute_vaes_avx2)
// Function arguments
.set KEY, %rdi
// Additional local variables
.set POWERS_PTR, %rsi
.set RNDKEYLAST_PTR, %rdx
.set TMP0, %ymm0
.set TMP0_XMM, %xmm0
.set TMP1, %ymm1
.set TMP1_XMM, %xmm1
.set TMP2, %ymm2
.set TMP2_XMM, %xmm2
.set H_CUR, %ymm3
.set H_CUR_XMM, %xmm3
.set H_CUR2, %ymm4
.set H_INC, %ymm5
.set H_INC_XMM, %xmm5
.set GFPOLY, %ymm6
.set GFPOLY_XMM, %xmm6
// Encrypt an all-zeroes block to get the raw hash subkey.
movl OFFSETOF_AESKEYLEN(KEY), %eax
lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR
vmovdqu (KEY), H_CUR_XMM // Zero-th round key XOR all-zeroes block
lea 16(KEY), %rax
1:
vaesenc (%rax), H_CUR_XMM, H_CUR_XMM
add $16, %rax
cmp %rax, RNDKEYLAST_PTR
jne 1b
vaesenclast (RNDKEYLAST_PTR), H_CUR_XMM, H_CUR_XMM
// Reflect the bytes of the raw hash subkey.
vpshufb .Lbswap_mask(%rip), H_CUR_XMM, H_CUR_XMM
// Finish preprocessing the byte-reflected hash subkey by multiplying it
// by x^-1 ("standard" interpretation of polynomial coefficients) or
// equivalently x^1 (natural interpretation). This gets the key into a
// format that avoids having to bit-reflect the data blocks later.
vpshufd $0xd3, H_CUR_XMM, TMP0_XMM
vpsrad $31, TMP0_XMM, TMP0_XMM
vpaddq H_CUR_XMM, H_CUR_XMM, H_CUR_XMM
vpand .Lgfpoly_and_internal_carrybit(%rip), TMP0_XMM, TMP0_XMM
vpxor TMP0_XMM, H_CUR_XMM, H_CUR_XMM
// Load the gfpoly constant.
vbroadcasti128 .Lgfpoly(%rip), GFPOLY
// Square H^1 to get H^2.
_ghash_square H_CUR_XMM, H_INC_XMM, GFPOLY_XMM, TMP0_XMM, TMP1_XMM
// Create H_CUR = [H^2, H^1] and H_INC = [H^2, H^2].
vinserti128 $1, H_CUR_XMM, H_INC, H_CUR
vinserti128 $1, H_INC_XMM, H_INC, H_INC
// Compute H_CUR2 = [H^4, H^3].
_ghash_mul H_INC, H_CUR, H_CUR2, GFPOLY, TMP0, TMP1, TMP2
// Store [H^2, H^1] and [H^4, H^3].
vmovdqu H_CUR, OFFSETOF_H_POWERS+3*32(KEY)
vmovdqu H_CUR2, OFFSETOF_H_POWERS+2*32(KEY)
// For Karatsuba multiplication: compute and store the two 64-bit halves
// of each key power XOR'd together. Order is 4,2,3,1.
vpunpcklqdq H_CUR, H_CUR2, TMP0
vpunpckhqdq H_CUR, H_CUR2, TMP1
vpxor TMP1, TMP0, TMP0
vmovdqu TMP0, OFFSETOF_H_POWERS_XORED+32(KEY)
// Compute and store H_CUR = [H^6, H^5] and H_CUR2 = [H^8, H^7].
_ghash_mul H_INC, H_CUR2, H_CUR, GFPOLY, TMP0, TMP1, TMP2
_ghash_mul H_INC, H_CUR, H_CUR2, GFPOLY, TMP0, TMP1, TMP2
vmovdqu H_CUR, OFFSETOF_H_POWERS+1*32(KEY)
vmovdqu H_CUR2, OFFSETOF_H_POWERS+0*32(KEY)
// Again, compute and store the two 64-bit halves of each key power
// XOR'd together. Order is 8,6,7,5.
vpunpcklqdq H_CUR, H_CUR2, TMP0
vpunpckhqdq H_CUR, H_CUR2, TMP1
vpxor TMP1, TMP0, TMP0
vmovdqu TMP0, OFFSETOF_H_POWERS_XORED(KEY)
vzeroupper
RET
SYM_FUNC_END(aes_gcm_precompute_vaes_avx2)
// Do one step of the GHASH update of four vectors of data blocks.
// \i: the step to do, 0 through 9
// \ghashdata_ptr: pointer to the data blocks (ciphertext or AAD)
// KEY: pointer to struct aes_gcm_key_vaes_avx2
// BSWAP_MASK: mask for reflecting the bytes of blocks
// H_POW[2-1]_XORED: cached values from KEY->h_powers_xored
// TMP[0-2]: temporary registers. TMP[1-2] must be preserved across steps.
// LO, MI: working state for this macro that must be preserved across steps
// GHASH_ACC: the GHASH accumulator (input/output)
.macro _ghash_step_4x i, ghashdata_ptr
.set HI, GHASH_ACC # alias
.set HI_XMM, GHASH_ACC_XMM
.if \i == 0
// First vector
vmovdqu 0*32(\ghashdata_ptr), TMP1
vpshufb BSWAP_MASK, TMP1, TMP1
vmovdqu OFFSETOF_H_POWERS+0*32(KEY), TMP2
vpxor GHASH_ACC, TMP1, TMP1
vpclmulqdq $0x00, TMP2, TMP1, LO
vpclmulqdq $0x11, TMP2, TMP1, HI
vpunpckhqdq TMP1, TMP1, TMP0
vpxor TMP1, TMP0, TMP0
vpclmulqdq $0x00, H_POW2_XORED, TMP0, MI
.elseif \i == 1
.elseif \i == 2
// Second vector
vmovdqu 1*32(\ghashdata_ptr), TMP1
vpshufb BSWAP_MASK, TMP1, TMP1
vmovdqu OFFSETOF_H_POWERS+1*32(KEY), TMP2
vpclmulqdq $0x00, TMP2, TMP1, TMP0
vpxor TMP0, LO, LO
vpclmulqdq $0x11, TMP2, TMP1, TMP0
vpxor TMP0, HI, HI
vpunpckhqdq TMP1, TMP1, TMP0
vpxor TMP1, TMP0, TMP0
vpclmulqdq $0x10, H_POW2_XORED, TMP0, TMP0
vpxor TMP0, MI, MI
.elseif \i == 3
// Third vector
vmovdqu 2*32(\ghashdata_ptr), TMP1
vpshufb BSWAP_MASK, TMP1, TMP1
vmovdqu OFFSETOF_H_POWERS+2*32(KEY), TMP2
.elseif \i == 4
vpclmulqdq $0x00, TMP2, TMP1, TMP0
vpxor TMP0, LO, LO
vpclmulqdq $0x11, TMP2, TMP1, TMP0
vpxor TMP0, HI, HI
.elseif \i == 5
vpunpckhqdq TMP1, TMP1, TMP0
vpxor TMP1, TMP0, TMP0
vpclmulqdq $0x00, H_POW1_XORED, TMP0, TMP0
vpxor TMP0, MI, MI
// Fourth vector
vmovdqu 3*32(\ghashdata_ptr), TMP1
vpshufb BSWAP_MASK, TMP1, TMP1
.elseif \i == 6
vmovdqu OFFSETOF_H_POWERS+3*32(KEY), TMP2
vpclmulqdq $0x00, TMP2, TMP1, TMP0
vpxor TMP0, LO, LO
vpclmulqdq $0x11, TMP2, TMP1, TMP0
vpxor TMP0, HI, HI
vpunpckhqdq TMP1, TMP1, TMP0
vpxor TMP1, TMP0, TMP0
vpclmulqdq $0x10, H_POW1_XORED, TMP0, TMP0
vpxor TMP0, MI, MI
.elseif \i == 7
// Finalize 'mi' following Karatsuba multiplication.
vpxor LO, MI, MI
vpxor HI, MI, MI
// Fold lo into mi.
vbroadcasti128 .Lgfpoly(%rip), TMP2
vpclmulqdq $0x01, LO, TMP2, TMP0
vpshufd $0x4e, LO, LO
vpxor LO, MI, MI
vpxor TMP0, MI, MI
.elseif \i == 8
// Fold mi into hi.
vpclmulqdq $0x01, MI, TMP2, TMP0
vpshufd $0x4e, MI, MI
vpxor MI, HI, HI
vpxor TMP0, HI, HI
.elseif \i == 9
vextracti128 $1, HI, TMP0_XMM
vpxor TMP0_XMM, HI_XMM, GHASH_ACC_XMM
.endif
.endm
// Update GHASH with four vectors of data blocks. See _ghash_step_4x for full
// explanation.
.macro _ghash_4x ghashdata_ptr
.irp i, 0,1,2,3,4,5,6,7,8,9
_ghash_step_4x \i, \ghashdata_ptr
.endr
.endm
// Load 1 <= %ecx <= 16 bytes from the pointer \src into the xmm register \dst
// and zeroize any remaining bytes. Clobbers %rax, %rcx, and \tmp{64,32}.
.macro _load_partial_block src, dst, tmp64, tmp32
sub $8, %ecx // LEN - 8
jle .Lle8\@
// Load 9 <= LEN <= 16 bytes.
vmovq (\src), \dst // Load first 8 bytes
mov (\src, %rcx), %rax // Load last 8 bytes
neg %ecx
shl $3, %ecx
shr %cl, %rax // Discard overlapping bytes
vpinsrq $1, %rax, \dst, \dst
jmp .Ldone\@
.Lle8\@:
add $4, %ecx // LEN - 4
jl .Llt4\@
// Load 4 <= LEN <= 8 bytes.
mov (\src), %eax // Load first 4 bytes
mov (\src, %rcx), \tmp32 // Load last 4 bytes
jmp .Lcombine\@
.Llt4\@:
// Load 1 <= LEN <= 3 bytes.
add $2, %ecx // LEN - 2
movzbl (\src), %eax // Load first byte
jl .Lmovq\@
movzwl (\src, %rcx), \tmp32 // Load last 2 bytes
.Lcombine\@:
shl $3, %ecx
shl %cl, \tmp64
or \tmp64, %rax // Combine the two parts
.Lmovq\@:
vmovq %rax, \dst
.Ldone\@:
.endm
// Store 1 <= %ecx <= 16 bytes from the xmm register \src to the pointer \dst.
// Clobbers %rax, %rcx, and \tmp{64,32}.
.macro _store_partial_block src, dst, tmp64, tmp32
sub $8, %ecx // LEN - 8
jl .Llt8\@
// Store 8 <= LEN <= 16 bytes.
vpextrq $1, \src, %rax
mov %ecx, \tmp32
shl $3, %ecx
ror %cl, %rax
mov %rax, (\dst, \tmp64) // Store last LEN - 8 bytes
vmovq \src, (\dst) // Store first 8 bytes
jmp .Ldone\@
.Llt8\@:
add $4, %ecx // LEN - 4
jl .Llt4\@
// Store 4 <= LEN <= 7 bytes.
vpextrd $1, \src, %eax
mov %ecx, \tmp32
shl $3, %ecx
ror %cl, %eax
mov %eax, (\dst, \tmp64) // Store last LEN - 4 bytes
vmovd \src, (\dst) // Store first 4 bytes
jmp .Ldone\@
.Llt4\@:
// Store 1 <= LEN <= 3 bytes.
vpextrb $0, \src, 0(\dst)
cmp $-2, %ecx // LEN - 4 == -2, i.e. LEN == 2?
jl .Ldone\@
vpextrb $1, \src, 1(\dst)
je .Ldone\@
vpextrb $2, \src, 2(\dst)
.Ldone\@:
.endm
// void aes_gcm_aad_update_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
// u8 ghash_acc[16],
// const u8 *aad, int aadlen);
//
// This function processes the AAD (Additional Authenticated Data) in GCM.
// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the
// data given by |aad| and |aadlen|. On the first call, |ghash_acc| must be all
// zeroes. |aadlen| must be a multiple of 16, except on the last call where it
// can be any length. The caller must do any buffering needed to ensure this.
//
// This handles large amounts of AAD efficiently, while also keeping overhead
// low for small amounts which is the common case. TLS and IPsec use less than
// one block of AAD, but (uncommonly) other use cases may use much more.
SYM_FUNC_START(aes_gcm_aad_update_vaes_avx2)
// Function arguments
.set KEY, %rdi
.set GHASH_ACC_PTR, %rsi
.set AAD, %rdx
.set AADLEN, %ecx // Must be %ecx for _load_partial_block
.set AADLEN64, %rcx // Zero-extend AADLEN before using!
// Additional local variables.
// %rax and %r8 are used as temporary registers.
.set TMP0, %ymm0
.set TMP0_XMM, %xmm0
.set TMP1, %ymm1
.set TMP1_XMM, %xmm1
.set TMP2, %ymm2
.set TMP2_XMM, %xmm2
.set LO, %ymm3
.set LO_XMM, %xmm3
.set MI, %ymm4
.set MI_XMM, %xmm4
.set GHASH_ACC, %ymm5
.set GHASH_ACC_XMM, %xmm5
.set BSWAP_MASK, %ymm6
.set BSWAP_MASK_XMM, %xmm6
.set GFPOLY, %ymm7
.set GFPOLY_XMM, %xmm7
.set H_POW2_XORED, %ymm8
.set H_POW1_XORED, %ymm9
// Load the bswap_mask and gfpoly constants. Since AADLEN is usually
// small, usually only 128-bit vectors will be used. So as an
// optimization, don't broadcast these constants to both 128-bit lanes
// quite yet.
vmovdqu .Lbswap_mask(%rip), BSWAP_MASK_XMM
vmovdqu .Lgfpoly(%rip), GFPOLY_XMM
// Load the GHASH accumulator.
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
// Check for the common case of AADLEN <= 16, as well as AADLEN == 0.
test AADLEN, AADLEN
jz .Laad_done
cmp $16, AADLEN
jle .Laad_lastblock
// AADLEN > 16, so we'll operate on full vectors. Broadcast bswap_mask
// and gfpoly to both 128-bit lanes.
vinserti128 $1, BSWAP_MASK_XMM, BSWAP_MASK, BSWAP_MASK
vinserti128 $1, GFPOLY_XMM, GFPOLY, GFPOLY
// If AADLEN >= 128, update GHASH with 128 bytes of AAD at a time.
add $-128, AADLEN // 128 is 4 bytes, -128 is 1 byte
jl .Laad_loop_4x_done
vmovdqu OFFSETOF_H_POWERS_XORED(KEY), H_POW2_XORED
vmovdqu OFFSETOF_H_POWERS_XORED+32(KEY), H_POW1_XORED
.Laad_loop_4x:
_ghash_4x AAD
sub $-128, AAD
add $-128, AADLEN
jge .Laad_loop_4x
.Laad_loop_4x_done:
// If AADLEN >= 32, update GHASH with 32 bytes of AAD at a time.
add $96, AADLEN
jl .Laad_loop_1x_done
.Laad_loop_1x:
vmovdqu (AAD), TMP0
vpshufb BSWAP_MASK, TMP0, TMP0
vpxor TMP0, GHASH_ACC, GHASH_ACC
vmovdqu OFFSETOFEND_H_POWERS-32(KEY), TMP0
_ghash_mul TMP0, GHASH_ACC, GHASH_ACC, GFPOLY, TMP1, TMP2, LO
vextracti128 $1, GHASH_ACC, TMP0_XMM
vpxor TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
add $32, AAD
sub $32, AADLEN
jge .Laad_loop_1x
.Laad_loop_1x_done:
add $32, AADLEN
// Now 0 <= AADLEN < 32.
jz .Laad_done
cmp $16, AADLEN
jle .Laad_lastblock
// Update GHASH with the remaining 17 <= AADLEN <= 31 bytes of AAD.
mov AADLEN, AADLEN // Zero-extend AADLEN to AADLEN64.
vmovdqu (AAD), TMP0_XMM
vmovdqu -16(AAD, AADLEN64), TMP1_XMM
vpshufb BSWAP_MASK_XMM, TMP0_XMM, TMP0_XMM
vpxor TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
lea .Lrshift_and_bswap_table(%rip), %rax
vpshufb -16(%rax, AADLEN64), TMP1_XMM, TMP1_XMM
vinserti128 $1, TMP1_XMM, GHASH_ACC, GHASH_ACC
vmovdqu OFFSETOFEND_H_POWERS-32(KEY), TMP0
_ghash_mul TMP0, GHASH_ACC, GHASH_ACC, GFPOLY, TMP1, TMP2, LO
vextracti128 $1, GHASH_ACC, TMP0_XMM
vpxor TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
jmp .Laad_done
.Laad_lastblock:
// Update GHASH with the remaining 1 <= AADLEN <= 16 bytes of AAD.
_load_partial_block AAD, TMP0_XMM, %r8, %r8d
vpshufb BSWAP_MASK_XMM, TMP0_XMM, TMP0_XMM
vpxor TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
vmovdqu OFFSETOFEND_H_POWERS-16(KEY), TMP0_XMM
_ghash_mul TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM, GFPOLY_XMM, \
TMP1_XMM, TMP2_XMM, LO_XMM
.Laad_done:
// Store the updated GHASH accumulator back to memory.
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
vzeroupper
RET
SYM_FUNC_END(aes_gcm_aad_update_vaes_avx2)
// Do one non-last round of AES encryption on the blocks in the given AESDATA
// vectors using the round key that has been broadcast to all 128-bit lanes of
// \round_key.
.macro _vaesenc round_key, vecs:vararg
.irp i, \vecs
vaesenc \round_key, AESDATA\i, AESDATA\i
.endr
.endm
// Generate counter blocks in the given AESDATA vectors, then do the zero-th AES
// round on them. Clobbers TMP0.
.macro _ctr_begin vecs:vararg
vbroadcasti128 .Linc_2blocks(%rip), TMP0
.irp i, \vecs
vpshufb BSWAP_MASK, LE_CTR, AESDATA\i
vpaddd TMP0, LE_CTR, LE_CTR
.endr
.irp i, \vecs
vpxor RNDKEY0, AESDATA\i, AESDATA\i
.endr
.endm
// Generate and encrypt counter blocks in the given AESDATA vectors, excluding
// the last AES round. Clobbers %rax and TMP0.
.macro _aesenc_loop vecs:vararg
_ctr_begin \vecs
lea 16(KEY), %rax
.Laesenc_loop\@:
vbroadcasti128 (%rax), TMP0
_vaesenc TMP0, \vecs
add $16, %rax
cmp %rax, RNDKEYLAST_PTR
jne .Laesenc_loop\@
.endm
// Finalize the keystream blocks in the given AESDATA vectors by doing the last
// AES round, then XOR those keystream blocks with the corresponding data.
// Reduce latency by doing the XOR before the vaesenclast, utilizing the
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a). Clobbers TMP0.
.macro _aesenclast_and_xor vecs:vararg
.irp i, \vecs
vpxor \i*32(SRC), RNDKEYLAST, TMP0
vaesenclast TMP0, AESDATA\i, AESDATA\i
.endr
.irp i, \vecs
vmovdqu AESDATA\i, \i*32(DST)
.endr
.endm
// void aes_gcm_{enc,dec}_update_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
// const u32 le_ctr[4], u8 ghash_acc[16],
// const u8 *src, u8 *dst, int datalen);
//
// This macro generates a GCM encryption or decryption update function with the
// above prototype (with \enc selecting which one). The function computes the
// next portion of the CTR keystream, XOR's it with |datalen| bytes from |src|,
// and writes the resulting encrypted or decrypted data to |dst|. It also
// updates the GHASH accumulator |ghash_acc| using the next |datalen| ciphertext
// bytes.
//
// |datalen| must be a multiple of 16, except on the last call where it can be
// any length. The caller must do any buffering needed to ensure this. Both
// in-place and out-of-place en/decryption are supported.
//
// |le_ctr| must give the current counter in little-endian format. This
// function loads the counter from |le_ctr| and increments the loaded counter as
// needed, but it does *not* store the updated counter back to |le_ctr|. The
// caller must update |le_ctr| if any more data segments follow. Internally,
// only the low 32-bit word of the counter is incremented, following the GCM
// standard.
.macro _aes_gcm_update enc
// Function arguments
.set KEY, %rdi
.set LE_CTR_PTR, %rsi
.set LE_CTR_PTR32, %esi
.set GHASH_ACC_PTR, %rdx
.set SRC, %rcx // Assumed to be %rcx.
// See .Ltail_xor_and_ghash_1to16bytes
.set DST, %r8
.set DATALEN, %r9d
.set DATALEN64, %r9 // Zero-extend DATALEN before using!
// Additional local variables
// %rax is used as a temporary register. LE_CTR_PTR is also available
// as a temporary register after the counter is loaded.
// AES key length in bytes
.set AESKEYLEN, %r10d
.set AESKEYLEN64, %r10
// Pointer to the last AES round key for the chosen AES variant
.set RNDKEYLAST_PTR, %r11
// BSWAP_MASK is the shuffle mask for byte-reflecting 128-bit values
// using vpshufb, copied to all 128-bit lanes.
.set BSWAP_MASK, %ymm0
.set BSWAP_MASK_XMM, %xmm0
// GHASH_ACC is the accumulator variable for GHASH. When fully reduced,
// only the lowest 128-bit lane can be nonzero. When not fully reduced,
// more than one lane may be used, and they need to be XOR'd together.
.set GHASH_ACC, %ymm1
.set GHASH_ACC_XMM, %xmm1
// TMP[0-2] are temporary registers.
.set TMP0, %ymm2
.set TMP0_XMM, %xmm2
.set TMP1, %ymm3
.set TMP1_XMM, %xmm3
.set TMP2, %ymm4
.set TMP2_XMM, %xmm4
// LO and MI are used to accumulate unreduced GHASH products.
.set LO, %ymm5
.set LO_XMM, %xmm5
.set MI, %ymm6
.set MI_XMM, %xmm6
// H_POW[2-1]_XORED contain cached values from KEY->h_powers_xored. The
// descending numbering reflects the order of the key powers.
.set H_POW2_XORED, %ymm7
.set H_POW2_XORED_XMM, %xmm7
.set H_POW1_XORED, %ymm8
// RNDKEY0 caches the zero-th round key, and RNDKEYLAST the last one.
.set RNDKEY0, %ymm9
.set RNDKEYLAST, %ymm10
// LE_CTR contains the next set of little-endian counter blocks.
.set LE_CTR, %ymm11
// AESDATA[0-3] hold the counter blocks that are being encrypted by AES.
.set AESDATA0, %ymm12
.set AESDATA0_XMM, %xmm12
.set AESDATA1, %ymm13
.set AESDATA1_XMM, %xmm13
.set AESDATA2, %ymm14
.set AESDATA3, %ymm15
.if \enc
.set GHASHDATA_PTR, DST
.else
.set GHASHDATA_PTR, SRC
.endif
vbroadcasti128 .Lbswap_mask(%rip), BSWAP_MASK
// Load the GHASH accumulator and the starting counter.
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
vbroadcasti128 (LE_CTR_PTR), LE_CTR
// Load the AES key length in bytes.
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
// Make RNDKEYLAST_PTR point to the last AES round key. This is the
// round key with index 10, 12, or 14 for AES-128, AES-192, or AES-256
// respectively. Then load the zero-th and last round keys.
lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR
vbroadcasti128 (KEY), RNDKEY0
vbroadcasti128 (RNDKEYLAST_PTR), RNDKEYLAST
// Finish initializing LE_CTR by adding 1 to the second block.
vpaddd .Lctr_pattern(%rip), LE_CTR, LE_CTR
// If there are at least 128 bytes of data, then continue into the loop
// that processes 128 bytes of data at a time. Otherwise skip it.
add $-128, DATALEN // 128 is 4 bytes, -128 is 1 byte
jl .Lcrypt_loop_4x_done\@
vmovdqu OFFSETOF_H_POWERS_XORED(KEY), H_POW2_XORED
vmovdqu OFFSETOF_H_POWERS_XORED+32(KEY), H_POW1_XORED
// Main loop: en/decrypt and hash 4 vectors (128 bytes) at a time.
.if \enc
// Encrypt the first 4 vectors of plaintext blocks.
_aesenc_loop 0,1,2,3
_aesenclast_and_xor 0,1,2,3
sub $-128, SRC // 128 is 4 bytes, -128 is 1 byte
add $-128, DATALEN
jl .Lghash_last_ciphertext_4x\@
.endif
.align 16
.Lcrypt_loop_4x\@:
// Start the AES encryption of the counter blocks.
_ctr_begin 0,1,2,3
cmp $24, AESKEYLEN
jl 128f // AES-128?
je 192f // AES-192?
// AES-256
vbroadcasti128 -13*16(RNDKEYLAST_PTR), TMP0
_vaesenc TMP0, 0,1,2,3
vbroadcasti128 -12*16(RNDKEYLAST_PTR), TMP0
_vaesenc TMP0, 0,1,2,3
192:
vbroadcasti128 -11*16(RNDKEYLAST_PTR), TMP0
_vaesenc TMP0, 0,1,2,3
vbroadcasti128 -10*16(RNDKEYLAST_PTR), TMP0
_vaesenc TMP0, 0,1,2,3
128:
// Finish the AES encryption of the counter blocks in AESDATA[0-3],
// interleaved with the GHASH update of the ciphertext blocks.
.irp i, 9,8,7,6,5,4,3,2,1
_ghash_step_4x (9 - \i), GHASHDATA_PTR
vbroadcasti128 -\i*16(RNDKEYLAST_PTR), TMP0
_vaesenc TMP0, 0,1,2,3
.endr
_ghash_step_4x 9, GHASHDATA_PTR
.if \enc
sub $-128, DST // 128 is 4 bytes, -128 is 1 byte
.endif
_aesenclast_and_xor 0,1,2,3
sub $-128, SRC
.if !\enc
sub $-128, DST
.endif
add $-128, DATALEN
jge .Lcrypt_loop_4x\@
.if \enc
.Lghash_last_ciphertext_4x\@:
// Update GHASH with the last set of ciphertext blocks.
_ghash_4x DST
sub $-128, DST
.endif
.Lcrypt_loop_4x_done\@:
// Undo the extra subtraction by 128 and check whether data remains.
sub $-128, DATALEN // 128 is 4 bytes, -128 is 1 byte
jz .Ldone\@
// The data length isn't a multiple of 128 bytes. Process the remaining
// data of length 1 <= DATALEN < 128.
//
// Since there are enough key powers available for all remaining data,
// there is no need to do a GHASH reduction after each iteration.
// Instead, multiply each remaining block by its own key power, and only
// do a GHASH reduction at the very end.
// Make POWERS_PTR point to the key powers [H^N, H^(N-1), ...] where N
// is the number of blocks that remain.
.set POWERS_PTR, LE_CTR_PTR // LE_CTR_PTR is free to be reused.
.set POWERS_PTR32, LE_CTR_PTR32
mov DATALEN, %eax
neg %rax
and $~15, %rax // -round_up(DATALEN, 16)
lea OFFSETOFEND_H_POWERS(KEY,%rax), POWERS_PTR
// Start collecting the unreduced GHASH intermediate value LO, MI, HI.
.set HI, H_POW2_XORED // H_POW2_XORED is free to be reused.
.set HI_XMM, H_POW2_XORED_XMM
vpxor LO_XMM, LO_XMM, LO_XMM
vpxor MI_XMM, MI_XMM, MI_XMM
vpxor HI_XMM, HI_XMM, HI_XMM
// 1 <= DATALEN < 128. Generate 2 or 4 more vectors of keystream blocks
// excluding the last AES round, depending on the remaining DATALEN.
cmp $64, DATALEN
jg .Ltail_gen_4_keystream_vecs\@
_aesenc_loop 0,1
cmp $32, DATALEN
jge .Ltail_xor_and_ghash_full_vec_loop\@
jmp .Ltail_xor_and_ghash_partial_vec\@
.Ltail_gen_4_keystream_vecs\@:
_aesenc_loop 0,1,2,3
// XOR the remaining data and accumulate the unreduced GHASH products
// for DATALEN >= 32, starting with one full 32-byte vector at a time.
.Ltail_xor_and_ghash_full_vec_loop\@:
.if \enc
_aesenclast_and_xor 0
vpshufb BSWAP_MASK, AESDATA0, AESDATA0
.else
vmovdqu (SRC), TMP1
vpxor TMP1, RNDKEYLAST, TMP0
vaesenclast TMP0, AESDATA0, AESDATA0
vmovdqu AESDATA0, (DST)
vpshufb BSWAP_MASK, TMP1, AESDATA0
.endif
// The ciphertext blocks (i.e. GHASH input data) are now in AESDATA0.
vpxor GHASH_ACC, AESDATA0, AESDATA0
vmovdqu (POWERS_PTR), TMP2
_ghash_mul_noreduce TMP2, AESDATA0, LO, MI, HI, TMP0
vmovdqa AESDATA1, AESDATA0
vmovdqa AESDATA2, AESDATA1
vmovdqa AESDATA3, AESDATA2
vpxor GHASH_ACC_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
add $32, SRC
add $32, DST
add $32, POWERS_PTR
sub $32, DATALEN
cmp $32, DATALEN
jge .Ltail_xor_and_ghash_full_vec_loop\@
test DATALEN, DATALEN
jz .Ltail_ghash_reduce\@
.Ltail_xor_and_ghash_partial_vec\@:
// XOR the remaining data and accumulate the unreduced GHASH products,
// for 1 <= DATALEN < 32.
vaesenclast RNDKEYLAST, AESDATA0, AESDATA0
cmp $16, DATALEN
jle .Ltail_xor_and_ghash_1to16bytes\@
// Handle 17 <= DATALEN < 32.
// Load a vpshufb mask that will right-shift by '32 - DATALEN' bytes
// (shifting in zeroes), then reflect all 16 bytes.
lea .Lrshift_and_bswap_table(%rip), %rax
vmovdqu -16(%rax, DATALEN64), TMP2_XMM
// Move the second keystream block to its own register and left-align it
vextracti128 $1, AESDATA0, AESDATA1_XMM
vpxor .Lfifteens(%rip), TMP2_XMM, TMP0_XMM
vpshufb TMP0_XMM, AESDATA1_XMM, AESDATA1_XMM
// Using overlapping loads and stores, XOR the source data with the
// keystream and write the destination data. Then prepare the GHASH
// input data: the full ciphertext block and the zero-padded partial
// ciphertext block, both byte-reflected, in AESDATA0.
.if \enc
vpxor -16(SRC, DATALEN64), AESDATA1_XMM, AESDATA1_XMM
vpxor (SRC), AESDATA0_XMM, AESDATA0_XMM
vmovdqu AESDATA1_XMM, -16(DST, DATALEN64)
vmovdqu AESDATA0_XMM, (DST)
vpshufb TMP2_XMM, AESDATA1_XMM, AESDATA1_XMM
vpshufb BSWAP_MASK_XMM, AESDATA0_XMM, AESDATA0_XMM
.else
vmovdqu -16(SRC, DATALEN64), TMP1_XMM
vmovdqu (SRC), TMP0_XMM
vpxor TMP1_XMM, AESDATA1_XMM, AESDATA1_XMM
vpxor TMP0_XMM, AESDATA0_XMM, AESDATA0_XMM
vmovdqu AESDATA1_XMM, -16(DST, DATALEN64)
vmovdqu AESDATA0_XMM, (DST)
vpshufb TMP2_XMM, TMP1_XMM, AESDATA1_XMM
vpshufb BSWAP_MASK_XMM, TMP0_XMM, AESDATA0_XMM
.endif
vpxor GHASH_ACC_XMM, AESDATA0_XMM, AESDATA0_XMM
vinserti128 $1, AESDATA1_XMM, AESDATA0, AESDATA0
vmovdqu (POWERS_PTR), TMP2
jmp .Ltail_ghash_last_vec\@
.Ltail_xor_and_ghash_1to16bytes\@:
// Handle 1 <= DATALEN <= 16. Carefully load and store the
// possibly-partial block, which we mustn't access out of bounds.
vmovdqu (POWERS_PTR), TMP2_XMM
mov SRC, KEY // Free up %rcx, assuming SRC == %rcx
mov DATALEN, %ecx
_load_partial_block KEY, TMP0_XMM, POWERS_PTR, POWERS_PTR32
vpxor TMP0_XMM, AESDATA0_XMM, AESDATA0_XMM
mov DATALEN, %ecx
_store_partial_block AESDATA0_XMM, DST, POWERS_PTR, POWERS_PTR32
.if \enc
lea .Lselect_high_bytes_table(%rip), %rax
vpshufb BSWAP_MASK_XMM, AESDATA0_XMM, AESDATA0_XMM
vpand (%rax, DATALEN64), AESDATA0_XMM, AESDATA0_XMM
.else
vpshufb BSWAP_MASK_XMM, TMP0_XMM, AESDATA0_XMM
.endif
vpxor GHASH_ACC_XMM, AESDATA0_XMM, AESDATA0_XMM
.Ltail_ghash_last_vec\@:
// Accumulate the unreduced GHASH products for the last 1-2 blocks. The
// GHASH input data is in AESDATA0. If only one block remains, then the
// second block in AESDATA0 is zero and does not affect the result.
_ghash_mul_noreduce TMP2, AESDATA0, LO, MI, HI, TMP0
.Ltail_ghash_reduce\@:
// Finally, do the GHASH reduction.
vbroadcasti128 .Lgfpoly(%rip), TMP0
_ghash_reduce LO, MI, HI, TMP0, TMP1
vextracti128 $1, HI, GHASH_ACC_XMM
vpxor HI_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
.Ldone\@:
// Store the updated GHASH accumulator back to memory.
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
vzeroupper
RET
.endm
// void aes_gcm_enc_final_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
// const u32 le_ctr[4], u8 ghash_acc[16],
// u64 total_aadlen, u64 total_datalen);
// bool aes_gcm_dec_final_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
// const u32 le_ctr[4], const u8 ghash_acc[16],
// u64 total_aadlen, u64 total_datalen,
// const u8 tag[16], int taglen);
//
// This macro generates one of the above two functions (with \enc selecting
// which one). Both functions finish computing the GCM authentication tag by
// updating GHASH with the lengths block and encrypting the GHASH accumulator.
// |total_aadlen| and |total_datalen| must be the total length of the additional
// authenticated data and the en/decrypted data in bytes, respectively.
//
// The encryption function then stores the full-length (16-byte) computed
// authentication tag to |ghash_acc|. The decryption function instead loads the
// expected authentication tag (the one that was transmitted) from the 16-byte
// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the
// computed tag in constant time, and returns true if and only if they match.
.macro _aes_gcm_final enc
// Function arguments
.set KEY, %rdi
.set LE_CTR_PTR, %rsi
.set GHASH_ACC_PTR, %rdx
.set TOTAL_AADLEN, %rcx
.set TOTAL_DATALEN, %r8
.set TAG, %r9
.set TAGLEN, %r10d // Originally at 8(%rsp)
.set TAGLEN64, %r10
// Additional local variables.
// %rax and %xmm0-%xmm3 are used as temporary registers.
.set AESKEYLEN, %r11d
.set AESKEYLEN64, %r11
.set GFPOLY, %xmm4
.set BSWAP_MASK, %xmm5
.set LE_CTR, %xmm6
.set GHASH_ACC, %xmm7
.set H_POW1, %xmm8
// Load some constants.
vmovdqa .Lgfpoly(%rip), GFPOLY
vmovdqa .Lbswap_mask(%rip), BSWAP_MASK
// Load the AES key length in bytes.
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
// Set up a counter block with 1 in the low 32-bit word. This is the
// counter that produces the ciphertext needed to encrypt the auth tag.
// GFPOLY has 1 in the low word, so grab the 1 from there using a blend.
vpblendd $0xe, (LE_CTR_PTR), GFPOLY, LE_CTR
// Build the lengths block and XOR it with the GHASH accumulator.
// Although the lengths block is defined as the AAD length followed by
// the en/decrypted data length, both in big-endian byte order, a byte
// reflection of the full block is needed because of the way we compute
// GHASH (see _ghash_mul_step). By using little-endian values in the
// opposite order, we avoid having to reflect any bytes here.
vmovq TOTAL_DATALEN, %xmm0
vpinsrq $1, TOTAL_AADLEN, %xmm0, %xmm0
vpsllq $3, %xmm0, %xmm0 // Bytes to bits
vpxor (GHASH_ACC_PTR), %xmm0, GHASH_ACC
// Load the first hash key power (H^1), which is stored last.
vmovdqu OFFSETOFEND_H_POWERS-16(KEY), H_POW1
// Load TAGLEN if decrypting.
.if !\enc
movl 8(%rsp), TAGLEN
.endif
// Make %rax point to the last AES round key for the chosen AES variant.
lea 6*16(KEY,AESKEYLEN64,4), %rax
// Start the AES encryption of the counter block by swapping the counter
// block to big-endian and XOR-ing it with the zero-th AES round key.
vpshufb BSWAP_MASK, LE_CTR, %xmm0
vpxor (KEY), %xmm0, %xmm0
// Complete the AES encryption and multiply GHASH_ACC by H^1.
// Interleave the AES and GHASH instructions to improve performance.
cmp $24, AESKEYLEN
jl 128f // AES-128?
je 192f // AES-192?
// AES-256
vaesenc -13*16(%rax), %xmm0, %xmm0
vaesenc -12*16(%rax), %xmm0, %xmm0
192:
vaesenc -11*16(%rax), %xmm0, %xmm0
vaesenc -10*16(%rax), %xmm0, %xmm0
128:
.irp i, 0,1,2,3,4,5,6,7,8
_ghash_mul_step \i, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
%xmm1, %xmm2, %xmm3
vaesenc (\i-9)*16(%rax), %xmm0, %xmm0
.endr
_ghash_mul_step 9, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
%xmm1, %xmm2, %xmm3
// Undo the byte reflection of the GHASH accumulator.
vpshufb BSWAP_MASK, GHASH_ACC, GHASH_ACC
// Do the last AES round and XOR the resulting keystream block with the
// GHASH accumulator to produce the full computed authentication tag.
//
// Reduce latency by taking advantage of the property vaesenclast(key,
// a) ^ b == vaesenclast(key ^ b, a). I.e., XOR GHASH_ACC into the last
// round key, instead of XOR'ing the final AES output with GHASH_ACC.
//
// enc_final then returns the computed auth tag, while dec_final
// compares it with the transmitted one and returns a bool. To compare
// the tags, dec_final XORs them together and uses vptest to check
// whether the result is all-zeroes. This should be constant-time.
// dec_final applies the vaesenclast optimization to this additional
// value XOR'd too.
.if \enc
vpxor (%rax), GHASH_ACC, %xmm1
vaesenclast %xmm1, %xmm0, GHASH_ACC
vmovdqu GHASH_ACC, (GHASH_ACC_PTR)
.else
vpxor (TAG), GHASH_ACC, GHASH_ACC
vpxor (%rax), GHASH_ACC, GHASH_ACC
vaesenclast GHASH_ACC, %xmm0, %xmm0
lea .Lselect_high_bytes_table(%rip), %rax
vmovdqu (%rax, TAGLEN64), %xmm1
vpshufb BSWAP_MASK, %xmm1, %xmm1 // select low bytes, not high
xor %eax, %eax
vptest %xmm1, %xmm0
sete %al
.endif
// No need for vzeroupper here, since only used xmm registers were used.
RET
.endm
SYM_FUNC_START(aes_gcm_enc_update_vaes_avx2)
_aes_gcm_update 1
SYM_FUNC_END(aes_gcm_enc_update_vaes_avx2)
SYM_FUNC_START(aes_gcm_dec_update_vaes_avx2)
_aes_gcm_update 0
SYM_FUNC_END(aes_gcm_dec_update_vaes_avx2)
SYM_FUNC_START(aes_gcm_enc_final_vaes_avx2)
_aes_gcm_final 1
SYM_FUNC_END(aes_gcm_enc_final_vaes_avx2)
SYM_FUNC_START(aes_gcm_dec_final_vaes_avx2)
_aes_gcm_final 0
SYM_FUNC_END(aes_gcm_dec_final_vaes_avx2)