mirror of
https://github.com/torvalds/linux.git
synced 2025-12-07 20:06:24 +00:00
Sometimes we may need to iterate over, or find an element in a read only (or read mostly) red-black tree, and in that case we don't need a mutable reference to the tree, which we'll however have to take to be able to use the current (mutable) cursor implementation. This patch adds a simple immutable cursor implementation to RBTree, which enables us to use an immutable tree reference. The existing (fully featured) cursor implementation is renamed to CursorMut, while retaining its functionality. The only existing user of the [mutable] cursor for RBTrees (binder) is updated to match the changes. Signed-off-by: Vitaly Wool <vitaly.wool@konsulko.se> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Link: https://patch.msgid.link/20251014123339.2492210-1-vitaly.wool@konsulko.se [ Applied `rustfmt`. Added intra-doc link. Fixed unclosed example. Fixed docs description. Fixed typo and other formatting nits. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
489 lines
17 KiB
Rust
489 lines
17 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
// Copyright (C) 2025 Google LLC.
|
|
|
|
use kernel::{
|
|
page::PAGE_SIZE,
|
|
prelude::*,
|
|
rbtree::{RBTree, RBTreeNode, RBTreeNodeReservation},
|
|
seq_file::SeqFile,
|
|
seq_print,
|
|
task::Pid,
|
|
};
|
|
|
|
use crate::range_alloc::{DescriptorState, FreedRange, Range};
|
|
|
|
/// Keeps track of allocations in a process' mmap.
|
|
///
|
|
/// Each process has an mmap where the data for incoming transactions will be placed. This struct
|
|
/// keeps track of allocations made in the mmap. For each allocation, we store a descriptor that
|
|
/// has metadata related to the allocation. We also keep track of available free space.
|
|
pub(super) struct TreeRangeAllocator<T> {
|
|
/// This collection contains descriptors for *both* ranges containing an allocation, *and* free
|
|
/// ranges between allocations. The free ranges get merged, so there are never two free ranges
|
|
/// next to each other.
|
|
tree: RBTree<usize, Descriptor<T>>,
|
|
/// Contains an entry for every free range in `self.tree`. This tree sorts the ranges by size,
|
|
/// letting us look up the smallest range whose size is at least some lower bound.
|
|
free_tree: RBTree<FreeKey, ()>,
|
|
size: usize,
|
|
free_oneway_space: usize,
|
|
}
|
|
|
|
impl<T> TreeRangeAllocator<T> {
|
|
pub(crate) fn from_array(
|
|
size: usize,
|
|
ranges: &mut KVec<Range<T>>,
|
|
alloc: &mut FromArrayAllocs<T>,
|
|
) -> Self {
|
|
let mut tree = TreeRangeAllocator {
|
|
tree: RBTree::new(),
|
|
free_tree: RBTree::new(),
|
|
size,
|
|
free_oneway_space: size / 2,
|
|
};
|
|
|
|
let mut free_offset = 0;
|
|
for range in ranges.drain_all() {
|
|
let free_size = range.offset - free_offset;
|
|
if free_size > 0 {
|
|
let free_node = alloc.free_tree.pop().unwrap();
|
|
tree.free_tree
|
|
.insert(free_node.into_node((free_size, free_offset), ()));
|
|
let tree_node = alloc.tree.pop().unwrap();
|
|
tree.tree.insert(
|
|
tree_node.into_node(free_offset, Descriptor::new(free_offset, free_size)),
|
|
);
|
|
}
|
|
free_offset = range.endpoint();
|
|
|
|
if range.state.is_oneway() {
|
|
tree.free_oneway_space = tree.free_oneway_space.saturating_sub(range.size);
|
|
}
|
|
|
|
let free_res = alloc.free_tree.pop().unwrap();
|
|
let tree_node = alloc.tree.pop().unwrap();
|
|
let mut desc = Descriptor::new(range.offset, range.size);
|
|
desc.state = Some((range.state, free_res));
|
|
tree.tree.insert(tree_node.into_node(range.offset, desc));
|
|
}
|
|
|
|
// After the last range, we may need a free range.
|
|
if free_offset < size {
|
|
let free_size = size - free_offset;
|
|
let free_node = alloc.free_tree.pop().unwrap();
|
|
tree.free_tree
|
|
.insert(free_node.into_node((free_size, free_offset), ()));
|
|
let tree_node = alloc.tree.pop().unwrap();
|
|
tree.tree
|
|
.insert(tree_node.into_node(free_offset, Descriptor::new(free_offset, free_size)));
|
|
}
|
|
|
|
tree
|
|
}
|
|
|
|
pub(crate) fn is_empty(&self) -> bool {
|
|
let mut tree_iter = self.tree.values();
|
|
// There's always at least one range, because index zero is either the start of a free or
|
|
// allocated range.
|
|
let first_value = tree_iter.next().unwrap();
|
|
if tree_iter.next().is_some() {
|
|
// There are never two free ranges next to each other, so if there is more than one
|
|
// descriptor, then at least one of them must hold an allocated range.
|
|
return false;
|
|
}
|
|
// There is only one descriptor. Return true if it is for a free range.
|
|
first_value.state.is_none()
|
|
}
|
|
|
|
pub(crate) fn total_size(&self) -> usize {
|
|
self.size
|
|
}
|
|
|
|
pub(crate) fn free_oneway_space(&self) -> usize {
|
|
self.free_oneway_space
|
|
}
|
|
|
|
pub(crate) fn count_buffers(&self) -> usize {
|
|
self.tree
|
|
.values()
|
|
.filter(|desc| desc.state.is_some())
|
|
.count()
|
|
}
|
|
|
|
pub(crate) fn debug_print(&self, m: &SeqFile) -> Result<()> {
|
|
for desc in self.tree.values() {
|
|
let state = match &desc.state {
|
|
Some(state) => &state.0,
|
|
None => continue,
|
|
};
|
|
seq_print!(
|
|
m,
|
|
" buffer: {} size {} pid {}",
|
|
desc.offset,
|
|
desc.size,
|
|
state.pid(),
|
|
);
|
|
if state.is_oneway() {
|
|
seq_print!(m, " oneway");
|
|
}
|
|
match state {
|
|
DescriptorState::Reserved(_res) => {
|
|
seq_print!(m, " reserved\n");
|
|
}
|
|
DescriptorState::Allocated(_alloc) => {
|
|
seq_print!(m, " allocated\n");
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn find_best_match(&mut self, size: usize) -> Option<&mut Descriptor<T>> {
|
|
let free_cursor = self.free_tree.cursor_lower_bound(&(size, 0))?;
|
|
let ((_, offset), ()) = free_cursor.current();
|
|
self.tree.get_mut(offset)
|
|
}
|
|
|
|
/// Try to reserve a new buffer, using the provided allocation if necessary.
|
|
pub(crate) fn reserve_new(
|
|
&mut self,
|
|
debug_id: usize,
|
|
size: usize,
|
|
is_oneway: bool,
|
|
pid: Pid,
|
|
alloc: ReserveNewTreeAlloc<T>,
|
|
) -> Result<(usize, bool)> {
|
|
// Compute new value of free_oneway_space, which is set only on success.
|
|
let new_oneway_space = if is_oneway {
|
|
match self.free_oneway_space.checked_sub(size) {
|
|
Some(new_oneway_space) => new_oneway_space,
|
|
None => return Err(ENOSPC),
|
|
}
|
|
} else {
|
|
self.free_oneway_space
|
|
};
|
|
|
|
// Start detecting spammers once we have less than 20%
|
|
// of async space left (which is less than 10% of total
|
|
// buffer size).
|
|
//
|
|
// (This will short-circut, so `low_oneway_space` is
|
|
// only called when necessary.)
|
|
let oneway_spam_detected =
|
|
is_oneway && new_oneway_space < self.size / 10 && self.low_oneway_space(pid);
|
|
|
|
let (found_size, found_off, tree_node, free_tree_node) = match self.find_best_match(size) {
|
|
None => {
|
|
pr_warn!("ENOSPC from range_alloc.reserve_new - size: {}", size);
|
|
return Err(ENOSPC);
|
|
}
|
|
Some(desc) => {
|
|
let found_size = desc.size;
|
|
let found_offset = desc.offset;
|
|
|
|
// In case we need to break up the descriptor
|
|
let new_desc = Descriptor::new(found_offset + size, found_size - size);
|
|
let (tree_node, free_tree_node, desc_node_res) = alloc.initialize(new_desc);
|
|
|
|
desc.state = Some((
|
|
DescriptorState::new(is_oneway, debug_id, pid),
|
|
desc_node_res,
|
|
));
|
|
desc.size = size;
|
|
|
|
(found_size, found_offset, tree_node, free_tree_node)
|
|
}
|
|
};
|
|
self.free_oneway_space = new_oneway_space;
|
|
self.free_tree.remove(&(found_size, found_off));
|
|
|
|
if found_size != size {
|
|
self.tree.insert(tree_node);
|
|
self.free_tree.insert(free_tree_node);
|
|
}
|
|
|
|
Ok((found_off, oneway_spam_detected))
|
|
}
|
|
|
|
pub(crate) fn reservation_abort(&mut self, offset: usize) -> Result<FreedRange> {
|
|
let mut cursor = self.tree.cursor_lower_bound_mut(&offset).ok_or_else(|| {
|
|
pr_warn!(
|
|
"EINVAL from range_alloc.reservation_abort - offset: {}",
|
|
offset
|
|
);
|
|
EINVAL
|
|
})?;
|
|
|
|
let (_, desc) = cursor.current_mut();
|
|
|
|
if desc.offset != offset {
|
|
pr_warn!(
|
|
"EINVAL from range_alloc.reservation_abort - offset: {}",
|
|
offset
|
|
);
|
|
return Err(EINVAL);
|
|
}
|
|
|
|
let (reservation, free_node_res) = desc.try_change_state(|state| match state {
|
|
Some((DescriptorState::Reserved(reservation), free_node_res)) => {
|
|
(None, Ok((reservation, free_node_res)))
|
|
}
|
|
None => {
|
|
pr_warn!(
|
|
"EINVAL from range_alloc.reservation_abort - offset: {}",
|
|
offset
|
|
);
|
|
(None, Err(EINVAL))
|
|
}
|
|
allocated => {
|
|
pr_warn!(
|
|
"EPERM from range_alloc.reservation_abort - offset: {}",
|
|
offset
|
|
);
|
|
(allocated, Err(EPERM))
|
|
}
|
|
})?;
|
|
|
|
let mut size = desc.size;
|
|
let mut offset = desc.offset;
|
|
let free_oneway_space_add = if reservation.is_oneway { size } else { 0 };
|
|
|
|
self.free_oneway_space += free_oneway_space_add;
|
|
|
|
let mut freed_range = FreedRange::interior_pages(offset, size);
|
|
// Compute how large the next free region needs to be to include one more page in
|
|
// the newly freed range.
|
|
let add_next_page_needed = match (offset + size) % PAGE_SIZE {
|
|
0 => usize::MAX,
|
|
unalign => PAGE_SIZE - unalign,
|
|
};
|
|
// Compute how large the previous free region needs to be to include one more page
|
|
// in the newly freed range.
|
|
let add_prev_page_needed = match offset % PAGE_SIZE {
|
|
0 => usize::MAX,
|
|
unalign => unalign,
|
|
};
|
|
|
|
// Merge next into current if next is free
|
|
let remove_next = match cursor.peek_next() {
|
|
Some((_, next)) if next.state.is_none() => {
|
|
if next.size >= add_next_page_needed {
|
|
freed_range.end_page_idx += 1;
|
|
}
|
|
self.free_tree.remove(&(next.size, next.offset));
|
|
size += next.size;
|
|
true
|
|
}
|
|
_ => false,
|
|
};
|
|
|
|
if remove_next {
|
|
let (_, desc) = cursor.current_mut();
|
|
desc.size = size;
|
|
cursor.remove_next();
|
|
}
|
|
|
|
// Merge current into prev if prev is free
|
|
match cursor.peek_prev_mut() {
|
|
Some((_, prev)) if prev.state.is_none() => {
|
|
if prev.size >= add_prev_page_needed {
|
|
freed_range.start_page_idx -= 1;
|
|
}
|
|
// merge previous with current, remove current
|
|
self.free_tree.remove(&(prev.size, prev.offset));
|
|
offset = prev.offset;
|
|
size += prev.size;
|
|
prev.size = size;
|
|
cursor.remove_current();
|
|
}
|
|
_ => {}
|
|
};
|
|
|
|
self.free_tree
|
|
.insert(free_node_res.into_node((size, offset), ()));
|
|
|
|
Ok(freed_range)
|
|
}
|
|
|
|
pub(crate) fn reservation_commit(&mut self, offset: usize, data: &mut Option<T>) -> Result {
|
|
let desc = self.tree.get_mut(&offset).ok_or(ENOENT)?;
|
|
|
|
desc.try_change_state(|state| match state {
|
|
Some((DescriptorState::Reserved(reservation), free_node_res)) => (
|
|
Some((
|
|
DescriptorState::Allocated(reservation.allocate(data.take())),
|
|
free_node_res,
|
|
)),
|
|
Ok(()),
|
|
),
|
|
other => (other, Err(ENOENT)),
|
|
})
|
|
}
|
|
|
|
/// Takes an entry at the given offset from [`DescriptorState::Allocated`] to
|
|
/// [`DescriptorState::Reserved`].
|
|
///
|
|
/// Returns the size of the existing entry and the data associated with it.
|
|
pub(crate) fn reserve_existing(&mut self, offset: usize) -> Result<(usize, usize, Option<T>)> {
|
|
let desc = self.tree.get_mut(&offset).ok_or_else(|| {
|
|
pr_warn!(
|
|
"ENOENT from range_alloc.reserve_existing - offset: {}",
|
|
offset
|
|
);
|
|
ENOENT
|
|
})?;
|
|
|
|
let (debug_id, data) = desc.try_change_state(|state| match state {
|
|
Some((DescriptorState::Allocated(allocation), free_node_res)) => {
|
|
let (reservation, data) = allocation.deallocate();
|
|
let debug_id = reservation.debug_id;
|
|
(
|
|
Some((DescriptorState::Reserved(reservation), free_node_res)),
|
|
Ok((debug_id, data)),
|
|
)
|
|
}
|
|
other => {
|
|
pr_warn!(
|
|
"ENOENT from range_alloc.reserve_existing - offset: {}",
|
|
offset
|
|
);
|
|
(other, Err(ENOENT))
|
|
}
|
|
})?;
|
|
|
|
Ok((desc.size, debug_id, data))
|
|
}
|
|
|
|
/// Call the provided callback at every allocated region.
|
|
///
|
|
/// This destroys the range allocator. Used only during shutdown.
|
|
pub(crate) fn take_for_each<F: Fn(usize, usize, usize, Option<T>)>(&mut self, callback: F) {
|
|
for (_, desc) in self.tree.iter_mut() {
|
|
if let Some((DescriptorState::Allocated(allocation), _)) = &mut desc.state {
|
|
callback(
|
|
desc.offset,
|
|
desc.size,
|
|
allocation.debug_id(),
|
|
allocation.take(),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Find the amount and size of buffers allocated by the current caller.
|
|
///
|
|
/// The idea is that once we cross the threshold, whoever is responsible
|
|
/// for the low async space is likely to try to send another async transaction,
|
|
/// and at some point we'll catch them in the act. This is more efficient
|
|
/// than keeping a map per pid.
|
|
fn low_oneway_space(&self, calling_pid: Pid) -> bool {
|
|
let mut total_alloc_size = 0;
|
|
let mut num_buffers = 0;
|
|
for (_, desc) in self.tree.iter() {
|
|
if let Some((state, _)) = &desc.state {
|
|
if state.is_oneway() && state.pid() == calling_pid {
|
|
total_alloc_size += desc.size;
|
|
num_buffers += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Warn if this pid has more than 50 transactions, or more than 50% of
|
|
// async space (which is 25% of total buffer size). Oneway spam is only
|
|
// detected when the threshold is exceeded.
|
|
num_buffers > 50 || total_alloc_size > self.size / 4
|
|
}
|
|
}
|
|
|
|
type TreeDescriptorState<T> = (DescriptorState<T>, FreeNodeRes);
|
|
struct Descriptor<T> {
|
|
size: usize,
|
|
offset: usize,
|
|
state: Option<TreeDescriptorState<T>>,
|
|
}
|
|
|
|
impl<T> Descriptor<T> {
|
|
fn new(offset: usize, size: usize) -> Self {
|
|
Self {
|
|
size,
|
|
offset,
|
|
state: None,
|
|
}
|
|
}
|
|
|
|
fn try_change_state<F, Data>(&mut self, f: F) -> Result<Data>
|
|
where
|
|
F: FnOnce(Option<TreeDescriptorState<T>>) -> (Option<TreeDescriptorState<T>>, Result<Data>),
|
|
{
|
|
let (new_state, result) = f(self.state.take());
|
|
self.state = new_state;
|
|
result
|
|
}
|
|
}
|
|
|
|
// (Descriptor.size, Descriptor.offset)
|
|
type FreeKey = (usize, usize);
|
|
type FreeNodeRes = RBTreeNodeReservation<FreeKey, ()>;
|
|
|
|
/// An allocation for use by `reserve_new`.
|
|
pub(crate) struct ReserveNewTreeAlloc<T> {
|
|
tree_node_res: RBTreeNodeReservation<usize, Descriptor<T>>,
|
|
free_tree_node_res: FreeNodeRes,
|
|
desc_node_res: FreeNodeRes,
|
|
}
|
|
|
|
impl<T> ReserveNewTreeAlloc<T> {
|
|
pub(crate) fn try_new() -> Result<Self> {
|
|
let tree_node_res = RBTreeNodeReservation::new(GFP_KERNEL)?;
|
|
let free_tree_node_res = RBTreeNodeReservation::new(GFP_KERNEL)?;
|
|
let desc_node_res = RBTreeNodeReservation::new(GFP_KERNEL)?;
|
|
Ok(Self {
|
|
tree_node_res,
|
|
free_tree_node_res,
|
|
desc_node_res,
|
|
})
|
|
}
|
|
|
|
fn initialize(
|
|
self,
|
|
desc: Descriptor<T>,
|
|
) -> (
|
|
RBTreeNode<usize, Descriptor<T>>,
|
|
RBTreeNode<FreeKey, ()>,
|
|
FreeNodeRes,
|
|
) {
|
|
let size = desc.size;
|
|
let offset = desc.offset;
|
|
(
|
|
self.tree_node_res.into_node(offset, desc),
|
|
self.free_tree_node_res.into_node((size, offset), ()),
|
|
self.desc_node_res,
|
|
)
|
|
}
|
|
}
|
|
|
|
/// An allocation for creating a tree from an `ArrayRangeAllocator`.
|
|
pub(crate) struct FromArrayAllocs<T> {
|
|
tree: KVec<RBTreeNodeReservation<usize, Descriptor<T>>>,
|
|
free_tree: KVec<RBTreeNodeReservation<FreeKey, ()>>,
|
|
}
|
|
|
|
impl<T> FromArrayAllocs<T> {
|
|
pub(crate) fn try_new(len: usize) -> Result<Self> {
|
|
let num_descriptors = 2 * len + 1;
|
|
|
|
let mut tree = KVec::with_capacity(num_descriptors, GFP_KERNEL)?;
|
|
for _ in 0..num_descriptors {
|
|
tree.push(RBTreeNodeReservation::new(GFP_KERNEL)?, GFP_KERNEL)?;
|
|
}
|
|
|
|
let mut free_tree = KVec::with_capacity(num_descriptors, GFP_KERNEL)?;
|
|
for _ in 0..num_descriptors {
|
|
free_tree.push(RBTreeNodeReservation::new(GFP_KERNEL)?, GFP_KERNEL)?;
|
|
}
|
|
|
|
Ok(Self { tree, free_tree })
|
|
}
|
|
}
|