Files
linux/arch/arm/mm/fault-armv.c
Matthew Wilcox (Oracle) 53fbef56e0 mm: introduce memdesc_flags_t
Patch series "Add and use memdesc_flags_t".

At some point struct page will be separated from struct slab and struct
folio.  This is a step towards that by introducing a type for the 'flags'
word of all three structures.  This gives us a certain amount of type
safety by establishing that some of these unsigned longs are different
from other unsigned longs in that they contain things like node ID,
section number and zone number in the upper bits.  That lets us have
functions that can be easily called by anyone who has a slab, folio or
page (but not easily by anyone else) to get the node or zone.

There's going to be some unusual merge problems with this as some odd bits
of the kernel decide they want to print out the flags value or something
similar by writing page->flags and now they'll need to write page->flags.f
instead.  That's most of the churn here.  Maybe we should be removing
these things from the debug output?


This patch (of 11):

Wrap the unsigned long flags in a typedef.  In upcoming patches, this will
provide a strong hint that you can't just pass a random unsigned long to
functions which take this as an argument.

[willy@infradead.org: s/flags/flags.f/ in several architectures]
  Link: https://lkml.kernel.org/r/aKMgPRLD-WnkPxYm@casper.infradead.org
[nicola.vetrini@gmail.com: mips: fix compilation error]
  Link: https://lore.kernel.org/lkml/CA+G9fYvkpmqGr6wjBNHY=dRp71PLCoi2341JxOudi60yqaeUdg@mail.gmail.com/
  Link: https://lkml.kernel.org/r/20250825214245.1838158-1-nicola.vetrini@gmail.com
Link: https://lkml.kernel.org/r/20250805172307.1302730-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20250805172307.1302730-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Zi Yan <ziy@nvidia.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-09-13 16:55:07 -07:00

277 lines
7.0 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/arch/arm/mm/fault-armv.c
*
* Copyright (C) 1995 Linus Torvalds
* Modifications for ARM processor (c) 1995-2002 Russell King
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/gfp.h>
#include <asm/bugs.h>
#include <asm/cacheflush.h>
#include <asm/cachetype.h>
#include <asm/tlbflush.h>
#include "mm.h"
static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
#if __LINUX_ARM_ARCH__ < 6
/*
* We take the easy way out of this problem - we make the
* PTE uncacheable. However, we leave the write buffer on.
*
* Note that the pte lock held when calling update_mmu_cache must also
* guard the pte (somewhere else in the same mm) that we modify here.
* Therefore those configurations which might call adjust_pte (those
* without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
*/
static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
unsigned long pfn, pte_t *ptep)
{
pte_t entry = *ptep;
int ret;
/*
* If this page is present, it's actually being shared.
*/
ret = pte_present(entry);
/*
* If this page isn't present, or is already setup to
* fault (ie, is old), we can safely ignore any issues.
*/
if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
flush_cache_page(vma, address, pfn);
outer_flush_range((pfn << PAGE_SHIFT),
(pfn << PAGE_SHIFT) + PAGE_SIZE);
pte_val(entry) &= ~L_PTE_MT_MASK;
pte_val(entry) |= shared_pte_mask;
set_pte_at(vma->vm_mm, address, ptep, entry);
flush_tlb_page(vma, address);
}
return ret;
}
static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
unsigned long pfn, bool need_lock)
{
spinlock_t *ptl;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pmd_t pmdval;
int ret;
pgd = pgd_offset(vma->vm_mm, address);
if (pgd_none_or_clear_bad(pgd))
return 0;
p4d = p4d_offset(pgd, address);
if (p4d_none_or_clear_bad(p4d))
return 0;
pud = pud_offset(p4d, address);
if (pud_none_or_clear_bad(pud))
return 0;
pmd = pmd_offset(pud, address);
if (pmd_none_or_clear_bad(pmd))
return 0;
again:
/*
* This is called while another page table is mapped, so we
* must use the nested version. This also means we need to
* open-code the spin-locking.
*/
pte = pte_offset_map_rw_nolock(vma->vm_mm, pmd, address, &pmdval, &ptl);
if (!pte)
return 0;
if (need_lock) {
/*
* Use nested version here to indicate that we are already
* holding one similar spinlock.
*/
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
pte_unmap_unlock(pte, ptl);
goto again;
}
}
ret = do_adjust_pte(vma, address, pfn, pte);
if (need_lock)
spin_unlock(ptl);
pte_unmap(pte);
return ret;
}
static void
make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep, unsigned long pfn)
{
const unsigned long pmd_start_addr = ALIGN_DOWN(addr, PMD_SIZE);
const unsigned long pmd_end_addr = pmd_start_addr + PMD_SIZE;
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *mpnt;
unsigned long offset;
pgoff_t pgoff;
int aliases = 0;
pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
/*
* If we have any shared mappings that are in the same mm
* space, then we need to handle them specially to maintain
* cache coherency.
*/
flush_dcache_mmap_lock(mapping);
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
/*
* If we are using split PTE locks, then we need to take the pte
* lock. Otherwise we are using shared mm->page_table_lock which
* is already locked, thus cannot take it.
*/
bool need_lock = IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS);
unsigned long mpnt_addr;
/*
* If this VMA is not in our MM, we can ignore it.
* Note that we intentionally mask out the VMA
* that we are fixing up.
*/
if (mpnt->vm_mm != mm || mpnt == vma)
continue;
if (!(mpnt->vm_flags & VM_MAYSHARE))
continue;
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
mpnt_addr = mpnt->vm_start + offset;
/* Avoid deadlocks by not grabbing the same PTE lock again. */
if (mpnt_addr >= pmd_start_addr && mpnt_addr < pmd_end_addr)
need_lock = false;
aliases += adjust_pte(mpnt, mpnt_addr, pfn, need_lock);
}
flush_dcache_mmap_unlock(mapping);
if (aliases)
do_adjust_pte(vma, addr, pfn, ptep);
}
/*
* Take care of architecture specific things when placing a new PTE into
* a page table, or changing an existing PTE. Basically, there are two
* things that we need to take care of:
*
* 1. If PG_dcache_clean is not set for the page, we need to ensure
* that any cache entries for the kernels virtual memory
* range are written back to the page.
* 2. If we have multiple shared mappings of the same space in
* an object, we need to deal with the cache aliasing issues.
*
* Note that the pte lock will be held.
*/
void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep, unsigned int nr)
{
unsigned long pfn = pte_pfn(*ptep);
struct address_space *mapping;
struct folio *folio;
if (!pfn_valid(pfn))
return;
/*
* The zero page is never written to, so never has any dirty
* cache lines, and therefore never needs to be flushed.
*/
if (is_zero_pfn(pfn))
return;
folio = page_folio(pfn_to_page(pfn));
mapping = folio_flush_mapping(folio);
if (!test_and_set_bit(PG_dcache_clean, &folio->flags.f))
__flush_dcache_folio(mapping, folio);
if (mapping) {
if (cache_is_vivt())
make_coherent(mapping, vma, addr, ptep, pfn);
else if (vma->vm_flags & VM_EXEC)
__flush_icache_all();
}
}
#endif /* __LINUX_ARM_ARCH__ < 6 */
/*
* Check whether the write buffer has physical address aliasing
* issues. If it has, we need to avoid them for the case where
* we have several shared mappings of the same object in user
* space.
*/
static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
{
register unsigned long zero = 0, one = 1, val;
local_irq_disable();
mb();
*p1 = one;
mb();
*p2 = zero;
mb();
val = *p1;
mb();
local_irq_enable();
return val != zero;
}
void __init check_writebuffer_bugs(void)
{
struct page *page;
const char *reason;
unsigned long v = 1;
pr_info("CPU: Testing write buffer coherency: ");
page = alloc_page(GFP_KERNEL);
if (page) {
unsigned long *p1, *p2;
pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
p1 = vmap(&page, 1, VM_IOREMAP, prot);
p2 = vmap(&page, 1, VM_IOREMAP, prot);
if (p1 && p2) {
v = check_writebuffer(p1, p2);
reason = "enabling work-around";
} else {
reason = "unable to map memory\n";
}
vunmap(p1);
vunmap(p2);
put_page(page);
} else {
reason = "unable to grab page\n";
}
if (v) {
pr_cont("failed, %s\n", reason);
shared_pte_mask = L_PTE_MT_UNCACHED;
} else {
pr_cont("ok\n");
}
}