Files
linux/arch/riscv/kvm/mmu.c
Dong Yang df60cb2e67 KVM: riscv: Support enabling dirty log gradually in small chunks
There is already support of enabling dirty log gradually in small chunks
for x86 in commit 3c9bd4006b ("KVM: x86: enable dirty log gradually in
small chunks") and c862626 ("KVM: arm64: Support enabling dirty log
gradually in small chunks"). This adds support for riscv.

x86 and arm64 writes protect both huge pages and normal pages now, so
riscv protect also protects both huge pages and normal pages.

On a nested virtualization setup (RISC-V KVM running inside a QEMU VM
on an [Intel® Core™ i5-12500H] host), I did some tests with a 2G Linux
VM using different backing page sizes. The time taken for
memory_global_dirty_log_start in the L2 QEMU is listed below:

Page Size      Before    After Optimization
  4K            4490.23ms         31.94ms
  2M             48.97ms          45.46ms
  1G             28.40ms          30.93ms

Signed-off-by: Quan Zhou <zhouquan@iscas.ac.cn>
Signed-off-by: Dong Yang <dayss1224@gmail.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20251103062825.9084-1-dayss1224@gmail.com
Signed-off-by: Anup Patel <anup@brainfault.org>
2025-11-24 09:55:36 +05:30

473 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
*
* Authors:
* Anup Patel <anup.patel@wdc.com>
*/
#include <linux/errno.h>
#include <linux/hugetlb.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/kvm_host.h>
#include <linux/sched/signal.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nacl.h>
static void mmu_wp_memory_region(struct kvm *kvm, int slot)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
spin_lock(&kvm->mmu_lock);
kvm_riscv_gstage_wp_range(&gstage, start, end);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs_memslot(kvm, memslot);
}
int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
unsigned long size, bool writable, bool in_atomic)
{
int ret = 0;
pgprot_t prot;
unsigned long pfn;
phys_addr_t addr, end;
struct kvm_mmu_memory_cache pcache = {
.gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
.gfp_zero = __GFP_ZERO,
};
struct kvm_gstage_mapping map;
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
pfn = __phys_to_pfn(hpa);
prot = pgprot_noncached(PAGE_WRITE);
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
map.addr = addr;
map.pte = pfn_pte(pfn, prot);
map.pte = pte_mkdirty(map.pte);
map.level = 0;
if (!writable)
map.pte = pte_wrprotect(map.pte);
ret = kvm_mmu_topup_memory_cache(&pcache, kvm_riscv_gstage_pgd_levels);
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
ret = kvm_riscv_gstage_set_pte(&gstage, &pcache, &map);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
pfn++;
}
out:
kvm_mmu_free_memory_cache(&pcache);
return ret;
}
void kvm_riscv_mmu_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
{
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
spin_lock(&kvm->mmu_lock);
kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
spin_unlock(&kvm->mmu_lock);
}
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset,
unsigned long mask)
{
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
kvm_riscv_gstage_wp_range(&gstage, start, end);
}
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
{
}
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
{
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_riscv_mmu_free_pgd(kvm);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
phys_addr_t size = slot->npages << PAGE_SHIFT;
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
spin_lock(&kvm->mmu_lock);
kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
spin_unlock(&kvm->mmu_lock);
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
/*
* At this point memslot has been committed and there is an
* allocated dirty_bitmap[], dirty pages will be tracked while
* the memory slot is write protected.
*/
if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
return;
mmu_wp_memory_region(kvm, new->id);
}
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
hva_t hva, reg_end, size;
bool writable;
int ret = 0;
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
change != KVM_MR_FLAGS_ONLY)
return 0;
/*
* Prevent userspace from creating a memory region outside of the GPA
* space addressable by the KVM guest GPA space.
*/
if ((new->base_gfn + new->npages) >=
(kvm_riscv_gstage_gpa_size >> PAGE_SHIFT))
return -EFAULT;
hva = new->userspace_addr;
size = new->npages << PAGE_SHIFT;
reg_end = hva + size;
writable = !(new->flags & KVM_MEM_READONLY);
mmap_read_lock(current->mm);
/*
* A memory region could potentially cover multiple VMAs, and
* any holes between them, so iterate over all of them.
*
* +--------------------------------------------+
* +---------------+----------------+ +----------------+
* | : VMA 1 | VMA 2 | | VMA 3 : |
* +---------------+----------------+ +----------------+
* | memory region |
* +--------------------------------------------+
*/
do {
struct vm_area_struct *vma;
hva_t vm_end;
vma = find_vma_intersection(current->mm, hva, reg_end);
if (!vma)
break;
/*
* Mapping a read-only VMA is only allowed if the
* memory region is configured as read-only.
*/
if (writable && !(vma->vm_flags & VM_WRITE)) {
ret = -EPERM;
break;
}
/* Take the intersection of this VMA with the memory region */
vm_end = min(reg_end, vma->vm_end);
if (vma->vm_flags & VM_PFNMAP) {
/* IO region dirty page logging not allowed */
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
ret = -EINVAL;
goto out;
}
}
hva = vm_end;
} while (hva < reg_end);
out:
mmap_read_unlock(current->mm);
return ret;
}
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
{
struct kvm_gstage gstage;
if (!kvm->arch.pgd)
return false;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
kvm_riscv_gstage_unmap_range(&gstage, range->start << PAGE_SHIFT,
(range->end - range->start) << PAGE_SHIFT,
range->may_block);
return false;
}
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
pte_t *ptep;
u32 ptep_level = 0;
u64 size = (range->end - range->start) << PAGE_SHIFT;
struct kvm_gstage gstage;
if (!kvm->arch.pgd)
return false;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
&ptep, &ptep_level))
return false;
return ptep_test_and_clear_young(NULL, 0, ptep);
}
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
pte_t *ptep;
u32 ptep_level = 0;
u64 size = (range->end - range->start) << PAGE_SHIFT;
struct kvm_gstage gstage;
if (!kvm->arch.pgd)
return false;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
&ptep, &ptep_level))
return false;
return pte_young(ptep_get(ptep));
}
int kvm_riscv_mmu_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
gpa_t gpa, unsigned long hva, bool is_write,
struct kvm_gstage_mapping *out_map)
{
int ret;
kvm_pfn_t hfn;
bool writable;
short vma_pageshift;
gfn_t gfn = gpa >> PAGE_SHIFT;
struct vm_area_struct *vma;
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
bool logging = (memslot->dirty_bitmap &&
!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
unsigned long vma_pagesize, mmu_seq;
struct kvm_gstage gstage;
struct page *page;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
/* Setup initial state of output mapping */
memset(out_map, 0, sizeof(*out_map));
/* We need minimum second+third level pages */
ret = kvm_mmu_topup_memory_cache(pcache, kvm_riscv_gstage_pgd_levels);
if (ret) {
kvm_err("Failed to topup G-stage cache\n");
return ret;
}
mmap_read_lock(current->mm);
vma = vma_lookup(current->mm, hva);
if (unlikely(!vma)) {
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
mmap_read_unlock(current->mm);
return -EFAULT;
}
if (is_vm_hugetlb_page(vma))
vma_pageshift = huge_page_shift(hstate_vma(vma));
else
vma_pageshift = PAGE_SHIFT;
vma_pagesize = 1ULL << vma_pageshift;
if (logging || (vma->vm_flags & VM_PFNMAP))
vma_pagesize = PAGE_SIZE;
if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
/*
* Read mmu_invalidate_seq so that KVM can detect if the results of
* vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring
* kvm->mmu_lock.
*
* Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
* with the smp_wmb() in kvm_mmu_invalidate_end().
*/
mmu_seq = kvm->mmu_invalidate_seq;
mmap_read_unlock(current->mm);
if (vma_pagesize != PUD_SIZE &&
vma_pagesize != PMD_SIZE &&
vma_pagesize != PAGE_SIZE) {
kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
return -EFAULT;
}
hfn = __kvm_faultin_pfn(memslot, gfn, is_write ? FOLL_WRITE : 0,
&writable, &page);
if (hfn == KVM_PFN_ERR_HWPOISON) {
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
vma_pageshift, current);
return 0;
}
if (is_error_noslot_pfn(hfn))
return -EFAULT;
/*
* If logging is active then we allow writable pages only
* for write faults.
*/
if (logging && !is_write)
writable = false;
spin_lock(&kvm->mmu_lock);
if (mmu_invalidate_retry(kvm, mmu_seq))
goto out_unlock;
if (writable) {
mark_page_dirty_in_slot(kvm, memslot, gfn);
ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, false, true, out_map);
} else {
ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, true, true, out_map);
}
if (ret)
kvm_err("Failed to map in G-stage\n");
out_unlock:
kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable);
spin_unlock(&kvm->mmu_lock);
return ret;
}
int kvm_riscv_mmu_alloc_pgd(struct kvm *kvm)
{
struct page *pgd_page;
if (kvm->arch.pgd != NULL) {
kvm_err("kvm_arch already initialized?\n");
return -EINVAL;
}
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
get_order(kvm_riscv_gstage_pgd_size));
if (!pgd_page)
return -ENOMEM;
kvm->arch.pgd = page_to_virt(pgd_page);
kvm->arch.pgd_phys = page_to_phys(pgd_page);
return 0;
}
void kvm_riscv_mmu_free_pgd(struct kvm *kvm)
{
struct kvm_gstage gstage;
void *pgd = NULL;
spin_lock(&kvm->mmu_lock);
if (kvm->arch.pgd) {
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
kvm_riscv_gstage_unmap_range(&gstage, 0UL, kvm_riscv_gstage_gpa_size, false);
pgd = READ_ONCE(kvm->arch.pgd);
kvm->arch.pgd = NULL;
kvm->arch.pgd_phys = 0;
}
spin_unlock(&kvm->mmu_lock);
if (pgd)
free_pages((unsigned long)pgd, get_order(kvm_riscv_gstage_pgd_size));
}
void kvm_riscv_mmu_update_hgatp(struct kvm_vcpu *vcpu)
{
unsigned long hgatp = kvm_riscv_gstage_mode << HGATP_MODE_SHIFT;
struct kvm_arch *k = &vcpu->kvm->arch;
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
ncsr_write(CSR_HGATP, hgatp);
if (!kvm_riscv_gstage_vmid_bits())
kvm_riscv_local_hfence_gvma_all();
}