Files
linux/drivers/pci/controller/vmd.c
Linus Torvalds 43dfc13ca9 Merge tag 'pci-v6.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
Pull PCI updates from Bjorn Helgaas:
 "Enumeration:

   - Enable host bridge emulation for PCI_DOMAINS_GENERIC platforms (Dan
     Williams)

   - Switch vmd from custom domain number allocator to the common
     allocator to prevent a potential race with new non-VMD buses (Dan
     Williams)

   - Enable Precision Time Measurement (PTM) only if device advertises
     support for a relevant role, to prevent invalid PTM Requests that
     cause ACS violations that are reported as AER Uncorrectable
     Non-Fatal errors (Mika Westerberg)

  Resource management:

   - Prevent resource tree corruption when BAR resize fails (Ilpo
     Järvinen)

   - Restore BARs to the original size if a BAR resize fails (Ilpo
     Järvinen)

   - Remove BAR release from BAR resize attempts by the xe, i915, and
     amdgpu drivers so the PCI core can restore BARs if the resize fails
     (Ilpo Järvinen)

   - Move Resizable BAR code to rebar.c (Ilpo Järvinen)

   - Add pci_rebar_size_supported() and use it in i915 and xe (Ilpo
     Järvinen)

   - Add pci_rebar_get_max_size() and use it in xe and amdgpu (Ilpo
     Järvinen)

  Power management and error handling:

   - For drivers using PCI legacy suspend, save config state at suspend
     so that state (not any earlier state from enumeration, probe, or
     error recovery) will be restored when resuming (Lukas Wunner)

   - For devices with no driver or a driver that lacks power management,
     save config state at hibernate so that state (not any earlier state
     from enumeration, probe, or error recovery) will be restored when
     resuming (Lukas Wunner)

   - Save device config space on device addition, before driver binding,
     so error recovery works more reliably (Lukas Wunner)

   - Drop pci_save_state() from several drivers that no longer need it
     since the PCI core always does it and pci_restore_state() no longer
     invalidates the saved state (Lukas Wunner)

   - Document use of pci_save_state() by drivers to capture the state
     they want restored during error recovery (Lukas Wunner)

  Power control:

   - Add a struct pci_ops.assert_perst() function pointer to
     assert/deassert PCIe PERST# and implement it for the qcom driver
     (Krishna Chaitanya Chundru)

   - Add DT binding and pwrctrl driver for the Toshiba TC9563 PCIe
     switch, which must be held in reset after poweron so the pwrctrl
     driver can configure the switch via I2C before bringing up the
     links (Krishna Chaitanya Chundru)

  Endpoint framework:

   - Convert the endpoint doorbell test to use a threaded IRQ to fix a
     'sleeping while atomic' issue (Bhanu Seshu Kumar Valluri)

   - Add endpoint VNTB MSI doorbell support to reduce latency between
     host and endpoint (Frank Li)

  New native PCIe controller drivers:

   - Add CIX Sky1 host controller DT binding and driver (Hans Zhang)

   - Add NXP S32G host controller DT binding and driver (Vincent
     Guittot)

   - Add Renesas RZ/G3S host controller DT binding and driver (Claudiu
     Beznea)

   - Add SpacemiT K1 host controller DT binding and driver (Alex Elder)

  Amlogic Meson PCIe controller driver:

   - Update DT binding to name DBI region 'dbi', not 'elbi', and update
     driver to support both (Manivannan Sadhasivam)

  Apple PCIe controller driver:

   - Move struct pci_host_bridge allocation from pci_host_common_init()
     to callers, which significantly simplifies pcie-apple (Marc
     Zyngier)

  Broadcom STB PCIe controller driver:

   - Disable advertising ASPM L0s support correctly (Jim Quinlan)

   - Add a panic/die handler to print diagnostic info in case PCIe
     caused an unrecoverable abort (Jim Quinlan)

  Cadence PCIe controller driver:

   - Add module support for Cadence platform host and endpoint
     controller driver (Manikandan K Pillai)

   - Split headers into 'legacy' (LGA) and 'high perf' (HPA) to prepare
     for new CIX Sky1 driver (Manikandan K Pillai)

  MediaTek PCIe controller driver:

   - Convert DT binding to YAML schema (Christian Marangi)

   - Add Airoha AN7583 DT compatible and driver support (Christian
     Marangi)

  Qualcomm PCIe controller driver:

   - Add Qualcomm Kaanapali to SM8550 DT binding (Qiang Yu)

   - Add required 'power-domains' and 'resets' to qcom sa8775p, sc7280,
     sc8280xp, sm8150, sm8250, sm8350, sm8450, sm8550, x1e80100 DT
     schemas (Krzysztof Kozlowski)

   - Look up OPP using both frequency and data rate (not just frequency)
     so RPMh votes can account for both (Krishna Chaitanya Chundru)

  Rockchip DesignWare PCIe controller driver:

   - Add Rockchip RK3528 compatible strings in DT binding (Yao Zi)

  STMicroelectronics STM32MP25 PCIe controller driver:

   - Fix a race between link training and endpoint register
     initialization (Christian Bruel)

   - Align endpoint allocations to match the ATU requirements (Christian
     Bruel)

  Synopsys DesignWare PCIe controller driver:

   - Clear L1 PM Substate Capability 'Supported' bits unless glue driver
     says it's supported, which prevents users from enabling non-working
     L1SS. Currently only qcom and tegra194 support L1SS (Bjorn Helgaas)

   - Remove now-superfluous L1SS disable code from tegra194 (Bjorn
     Helgaas)

   - Configure L1SS support in dw-rockchip when DT says
     'supports-clkreq' (Shawn Lin)

  TI Keystone PCIe controller driver:

   - Fail the probe instead of silently succeeding if ks_pcie_of_data
     didn't specify Root Complex or Endpoint mode (Siddharth Vadapalli)

   - Make keystone buildable as a loadable module, except on ARM32 where
     hook_fault_code() is __init (Siddharth Vadapalli)"

* tag 'pci-v6.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci: (100 commits)
  MAINTAINERS: Add Manivannan Sadhasivam as PCI/pwrctrl maintainer
  MAINTAINERS: Add CIX Sky1 PCIe controller driver maintainer
  PCI: sky1: Add PCIe host support for CIX Sky1
  dt-bindings: PCI: Add CIX Sky1 PCIe Root Complex bindings
  PCI: cadence: Add support for High Perf Architecture (HPA) controller
  MAINTAINERS: Add NXP S32G PCIe controller driver maintainer
  PCI: s32g: Add NXP S32G PCIe controller driver (RC)
  PCI: dwc: Add register and bitfield definitions
  dt-bindings: PCI: s32g: Add NXP S32G PCIe controller
  PCI: Add Renesas RZ/G3S host controller driver
  PCI: host-generic: Move bridge allocation outside of pci_host_common_init()
  dt-bindings: PCI: Add Renesas RZ/G3S PCIe controller binding
  PCI: Validate pci_rebar_size_supported() input
  Documentation: PCI: Amend error recovery doc with pci_save_state() rules
  treewide: Drop pci_save_state() after pci_restore_state()
  PCI/ERR: Ensure error recoverability at all times
  PCI/PM: Stop needlessly clearing state_saved on enumeration and thaw
  PCI/PM: Reinstate clearing state_saved in legacy and !PM codepaths
  PCI: dw-rockchip: Configure L1SS support
  PCI: tegra194: Remove unnecessary L1SS disable code
  ...
2025-12-04 17:29:41 -08:00

1155 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Volume Management Device driver
* Copyright (c) 2015, Intel Corporation.
*/
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqchip/irq-msi-lib.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/pci.h>
#include <linux/pci-acpi.h>
#include <linux/pci-ecam.h>
#include <linux/srcu.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <xen/xen.h>
#include <asm/irqdomain.h>
#define VMD_CFGBAR 0
#define VMD_MEMBAR1 2
#define VMD_MEMBAR2 4
#define PCI_REG_VMCAP 0x40
#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
#define PCI_REG_VMCONFIG 0x44
#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
#define VMCONFIG_MSI_REMAP 0x2
#define PCI_REG_VMLOCK 0x70
#define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
#define MB2_SHADOW_OFFSET 0x2000
#define MB2_SHADOW_SIZE 16
enum vmd_features {
/*
* Device may contain registers which hint the physical location of the
* membars, in order to allow proper address translation during
* resource assignment to enable guest virtualization
*/
VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
/*
* Device may provide root port configuration information which limits
* bus numbering
*/
VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
/*
* Device contains physical location shadow registers in
* vendor-specific capability space
*/
VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
/*
* Device may use MSI-X vector 0 for software triggering and will not
* be used for MSI remapping
*/
VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
/*
* Device can bypass remapping MSI-X transactions into its MSI-X table,
* avoiding the requirement of a VMD MSI domain for child device
* interrupt handling.
*/
VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
/*
* Enable ASPM on the PCIE root ports and set the default LTR of the
* storage devices on platforms where these values are not configured by
* BIOS. This is needed for laptops, which require these settings for
* proper power management of the SoC.
*/
VMD_FEAT_BIOS_PM_QUIRK = (1 << 5),
};
#define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */
#define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \
VMD_FEAT_HAS_BUS_RESTRICTIONS | \
VMD_FEAT_OFFSET_FIRST_VECTOR | \
VMD_FEAT_BIOS_PM_QUIRK)
static DEFINE_IDA(vmd_instance_ida);
/*
* Lock for manipulating VMD IRQ lists.
*/
static DEFINE_RAW_SPINLOCK(list_lock);
/**
* struct vmd_irq - private data to map driver IRQ to the VMD shared vector
* @node: list item for parent traversal.
* @irq: back pointer to parent.
* @enabled: true if driver enabled IRQ
* @virq: the virtual IRQ value provided to the requesting driver.
*
* Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
* a VMD IRQ using this structure.
*/
struct vmd_irq {
struct list_head node;
struct vmd_irq_list *irq;
bool enabled;
unsigned int virq;
};
/**
* struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
* @irq_list: the list of irq's the VMD one demuxes to.
* @srcu: SRCU struct for local synchronization.
* @count: number of child IRQs assigned to this vector; used to track
* sharing.
* @virq: The underlying VMD Linux interrupt number
*/
struct vmd_irq_list {
struct list_head irq_list;
struct srcu_struct srcu;
unsigned int count;
unsigned int virq;
};
struct vmd_dev {
struct pci_dev *dev;
raw_spinlock_t cfg_lock;
void __iomem *cfgbar;
int msix_count;
struct vmd_irq_list *irqs;
struct pci_sysdata sysdata;
struct resource resources[3];
struct irq_domain *irq_domain;
struct pci_bus *bus;
u8 busn_start;
u8 first_vec;
char *name;
int instance;
};
static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
{
return container_of(bus->sysdata, struct vmd_dev, sysdata);
}
static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
struct vmd_irq_list *irqs)
{
return irqs - vmd->irqs;
}
/*
* Drivers managing a device in a VMD domain allocate their own IRQs as before,
* but the MSI entry for the hardware it's driving will be programmed with a
* destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
* domain into one of its own, and the VMD driver de-muxes these for the
* handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
* and irq_chip to set this up.
*/
static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct vmd_irq *vmdirq = data->chip_data;
struct vmd_irq_list *irq = vmdirq->irq;
struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
memset(msg, 0, sizeof(*msg));
msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
}
static void vmd_irq_enable(struct irq_data *data)
{
struct vmd_irq *vmdirq = data->chip_data;
scoped_guard(raw_spinlock_irqsave, &list_lock) {
WARN_ON(vmdirq->enabled);
list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
vmdirq->enabled = true;
}
}
static void vmd_pci_msi_enable(struct irq_data *data)
{
vmd_irq_enable(data->parent_data);
data->chip->irq_unmask(data);
}
static unsigned int vmd_pci_msi_startup(struct irq_data *data)
{
vmd_pci_msi_enable(data);
return 0;
}
static void vmd_irq_disable(struct irq_data *data)
{
struct vmd_irq *vmdirq = data->chip_data;
scoped_guard(raw_spinlock_irqsave, &list_lock) {
if (vmdirq->enabled) {
list_del_rcu(&vmdirq->node);
vmdirq->enabled = false;
}
}
}
static void vmd_pci_msi_disable(struct irq_data *data)
{
data->chip->irq_mask(data);
vmd_irq_disable(data->parent_data);
}
static void vmd_pci_msi_shutdown(struct irq_data *data)
{
vmd_pci_msi_disable(data);
}
static struct irq_chip vmd_msi_controller = {
.name = "VMD-MSI",
.irq_compose_msi_msg = vmd_compose_msi_msg,
};
/*
* XXX: We can be even smarter selecting the best IRQ once we solve the
* affinity problem.
*/
static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
{
int i, best;
if (vmd->msix_count == 1 + vmd->first_vec)
return &vmd->irqs[vmd->first_vec];
/*
* White list for fast-interrupt handlers. All others will share the
* "slow" interrupt vector.
*/
switch (msi_desc_to_pci_dev(desc)->class) {
case PCI_CLASS_STORAGE_EXPRESS:
break;
default:
return &vmd->irqs[vmd->first_vec];
}
scoped_guard(raw_spinlock_irq, &list_lock) {
best = vmd->first_vec + 1;
for (i = best; i < vmd->msix_count; i++)
if (vmd->irqs[i].count < vmd->irqs[best].count)
best = i;
vmd->irqs[best].count++;
}
return &vmd->irqs[best];
}
static void vmd_msi_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs);
static int vmd_msi_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct msi_desc *desc = ((msi_alloc_info_t *)arg)->desc;
struct vmd_dev *vmd = domain->host_data;
struct vmd_irq *vmdirq;
for (int i = 0; i < nr_irqs; ++i) {
vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
if (!vmdirq) {
vmd_msi_free(domain, virq, i);
return -ENOMEM;
}
INIT_LIST_HEAD(&vmdirq->node);
vmdirq->irq = vmd_next_irq(vmd, desc);
vmdirq->virq = virq + i;
irq_domain_set_info(domain, virq + i, vmdirq->irq->virq,
&vmd_msi_controller, vmdirq,
handle_untracked_irq, vmd, NULL);
}
return 0;
}
static void vmd_msi_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_data *irq_data;
struct vmd_irq *vmdirq;
for (int i = 0; i < nr_irqs; ++i) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
vmdirq = irq_data->chip_data;
synchronize_srcu(&vmdirq->irq->srcu);
/* XXX: Potential optimization to rebalance */
scoped_guard(raw_spinlock_irq, &list_lock)
vmdirq->irq->count--;
kfree(vmdirq);
}
}
static const struct irq_domain_ops vmd_msi_domain_ops = {
.alloc = vmd_msi_alloc,
.free = vmd_msi_free,
};
static bool vmd_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
struct irq_domain *real_parent,
struct msi_domain_info *info)
{
if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
return false;
info->chip->irq_startup = vmd_pci_msi_startup;
info->chip->irq_shutdown = vmd_pci_msi_shutdown;
info->chip->irq_enable = vmd_pci_msi_enable;
info->chip->irq_disable = vmd_pci_msi_disable;
return true;
}
#define VMD_MSI_FLAGS_SUPPORTED (MSI_GENERIC_FLAGS_MASK | MSI_FLAG_PCI_MSIX)
#define VMD_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_NO_AFFINITY)
static const struct msi_parent_ops vmd_msi_parent_ops = {
.supported_flags = VMD_MSI_FLAGS_SUPPORTED,
.required_flags = VMD_MSI_FLAGS_REQUIRED,
.bus_select_token = DOMAIN_BUS_VMD_MSI,
.bus_select_mask = MATCH_PCI_MSI,
.prefix = "VMD-",
.init_dev_msi_info = vmd_init_dev_msi_info,
};
static int vmd_create_irq_domain(struct vmd_dev *vmd)
{
struct irq_domain_info info = {
.size = vmd->msix_count,
.ops = &vmd_msi_domain_ops,
.host_data = vmd,
};
info.fwnode = irq_domain_alloc_named_id_fwnode("VMD-MSI",
vmd->sysdata.domain);
if (!info.fwnode)
return -ENODEV;
vmd->irq_domain = msi_create_parent_irq_domain(&info,
&vmd_msi_parent_ops);
if (!vmd->irq_domain) {
irq_domain_free_fwnode(info.fwnode);
return -ENODEV;
}
return 0;
}
static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
{
u16 reg;
pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
(reg | VMCONFIG_MSI_REMAP);
pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
}
static void vmd_remove_irq_domain(struct vmd_dev *vmd)
{
/*
* Some production BIOS won't enable remapping between soft reboots.
* Ensure remapping is restored before unloading the driver.
*/
if (!vmd->msix_count)
vmd_set_msi_remapping(vmd, true);
if (vmd->irq_domain) {
struct fwnode_handle *fn = vmd->irq_domain->fwnode;
irq_domain_remove(vmd->irq_domain);
irq_domain_free_fwnode(fn);
}
}
static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
unsigned int devfn, int reg, int len)
{
unsigned int busnr_ecam = bus->number - vmd->busn_start;
u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
return NULL;
return vmd->cfgbar + offset;
}
/*
* CPU may deadlock if config space is not serialized on some versions of this
* hardware, so all config space access is done under a spinlock.
*/
static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
int len, u32 *value)
{
struct vmd_dev *vmd = vmd_from_bus(bus);
void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
if (!addr)
return -EFAULT;
guard(raw_spinlock_irqsave)(&vmd->cfg_lock);
switch (len) {
case 1:
*value = readb(addr);
return 0;
case 2:
*value = readw(addr);
return 0;
case 4:
*value = readl(addr);
return 0;
default:
return -EINVAL;
}
}
/*
* VMD h/w converts non-posted config writes to posted memory writes. The
* read-back in this function forces the completion so it returns only after
* the config space was written, as expected.
*/
static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
int len, u32 value)
{
struct vmd_dev *vmd = vmd_from_bus(bus);
void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
if (!addr)
return -EFAULT;
guard(raw_spinlock_irqsave)(&vmd->cfg_lock);
switch (len) {
case 1:
writeb(value, addr);
readb(addr);
return 0;
case 2:
writew(value, addr);
readw(addr);
return 0;
case 4:
writel(value, addr);
readl(addr);
return 0;
default:
return -EINVAL;
}
}
static struct pci_ops vmd_ops = {
.read = vmd_pci_read,
.write = vmd_pci_write,
};
#ifdef CONFIG_ACPI
static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
{
struct pci_host_bridge *bridge;
u32 busnr, addr;
if (pci_dev->bus->ops != &vmd_ops)
return NULL;
bridge = pci_find_host_bridge(pci_dev->bus);
busnr = pci_dev->bus->number - bridge->bus->number;
/*
* The address computation below is only applicable to relative bus
* numbers below 32.
*/
if (busnr > 31)
return NULL;
addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
addr);
return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
false);
}
static bool hook_installed;
static void vmd_acpi_begin(void)
{
if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
return;
hook_installed = true;
}
static void vmd_acpi_end(void)
{
if (!hook_installed)
return;
pci_acpi_clear_companion_lookup_hook();
hook_installed = false;
}
#else
static inline void vmd_acpi_begin(void) { }
static inline void vmd_acpi_end(void) { }
#endif /* CONFIG_ACPI */
static void vmd_domain_reset(struct vmd_dev *vmd)
{
u16 bus, max_buses = resource_size(&vmd->resources[0]);
u8 dev, functions, fn, hdr_type;
char __iomem *base;
for (bus = 0; bus < max_buses; bus++) {
for (dev = 0; dev < 32; dev++) {
base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
PCI_DEVFN(dev, 0), 0);
hdr_type = readb(base + PCI_HEADER_TYPE);
functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
for (fn = 0; fn < functions; fn++) {
base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
PCI_DEVFN(dev, fn), 0);
hdr_type = readb(base + PCI_HEADER_TYPE) &
PCI_HEADER_TYPE_MASK;
if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
(readw(base + PCI_CLASS_DEVICE) !=
PCI_CLASS_BRIDGE_PCI))
continue;
/*
* Temporarily disable the I/O range before updating
* PCI_IO_BASE.
*/
writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
/* Update lower 16 bits of I/O base/limit */
writew(0x00f0, base + PCI_IO_BASE);
/* Update upper 16 bits of I/O base/limit */
writel(0, base + PCI_IO_BASE_UPPER16);
/* MMIO Base/Limit */
writel(0x0000fff0, base + PCI_MEMORY_BASE);
/* Prefetchable MMIO Base/Limit */
writel(0, base + PCI_PREF_LIMIT_UPPER32);
writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
}
}
}
}
static void vmd_attach_resources(struct vmd_dev *vmd)
{
vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
}
static void vmd_detach_resources(struct vmd_dev *vmd)
{
vmd->dev->resource[VMD_MEMBAR1].child = NULL;
vmd->dev->resource[VMD_MEMBAR2].child = NULL;
}
static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
resource_size_t *offset1,
resource_size_t *offset2)
{
struct pci_dev *dev = vmd->dev;
u64 phys1, phys2;
if (native_hint) {
u32 vmlock;
int ret;
ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
if (ret || PCI_POSSIBLE_ERROR(vmlock))
return -ENODEV;
if (MB2_SHADOW_EN(vmlock)) {
void __iomem *membar2;
membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
if (!membar2)
return -ENOMEM;
phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
pci_iounmap(dev, membar2);
} else
return 0;
} else {
/* Hypervisor-Emulated Vendor-Specific Capability */
int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
u32 reg, regu;
pci_read_config_dword(dev, pos + 4, &reg);
/* "SHDW" */
if (pos && reg == 0x53484457) {
pci_read_config_dword(dev, pos + 8, &reg);
pci_read_config_dword(dev, pos + 12, &regu);
phys1 = (u64) regu << 32 | reg;
pci_read_config_dword(dev, pos + 16, &reg);
pci_read_config_dword(dev, pos + 20, &regu);
phys2 = (u64) regu << 32 | reg;
} else
return 0;
}
*offset1 = dev->resource[VMD_MEMBAR1].start -
(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
*offset2 = dev->resource[VMD_MEMBAR2].start -
(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
return 0;
}
static int vmd_get_bus_number_start(struct vmd_dev *vmd)
{
struct pci_dev *dev = vmd->dev;
u16 reg;
pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
if (BUS_RESTRICT_CAP(reg)) {
pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
switch (BUS_RESTRICT_CFG(reg)) {
case 0:
vmd->busn_start = 0;
break;
case 1:
vmd->busn_start = 128;
break;
case 2:
vmd->busn_start = 224;
break;
default:
pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
BUS_RESTRICT_CFG(reg));
return -ENODEV;
}
}
return 0;
}
static irqreturn_t vmd_irq(int irq, void *data)
{
struct vmd_irq_list *irqs = data;
struct vmd_irq *vmdirq;
int idx;
idx = srcu_read_lock(&irqs->srcu);
list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
generic_handle_irq(vmdirq->virq);
srcu_read_unlock(&irqs->srcu, idx);
return IRQ_HANDLED;
}
static int vmd_alloc_irqs(struct vmd_dev *vmd)
{
struct pci_dev *dev = vmd->dev;
int i, err;
vmd->msix_count = pci_msix_vec_count(dev);
if (vmd->msix_count < 0)
return -ENODEV;
vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
vmd->msix_count, PCI_IRQ_MSIX);
if (vmd->msix_count < 0)
return vmd->msix_count;
vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
GFP_KERNEL);
if (!vmd->irqs)
return -ENOMEM;
for (i = 0; i < vmd->msix_count; i++) {
err = init_srcu_struct(&vmd->irqs[i].srcu);
if (err)
return err;
INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
vmd->irqs[i].virq = pci_irq_vector(dev, i);
err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
vmd_irq, IRQF_NO_THREAD,
vmd->name, &vmd->irqs[i]);
if (err)
return err;
}
return 0;
}
/*
* Since VMD is an aperture to regular PCIe root ports, only allow it to
* control features that the OS is allowed to control on the physical PCI bus.
*/
static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
struct pci_host_bridge *vmd_bridge)
{
vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
vmd_bridge->native_aer = root_bridge->native_aer;
vmd_bridge->native_pme = root_bridge->native_pme;
vmd_bridge->native_ltr = root_bridge->native_ltr;
vmd_bridge->native_dpc = root_bridge->native_dpc;
}
/*
* Enable ASPM and LTR settings on devices that aren't configured by BIOS.
*/
static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
{
unsigned long features = *(unsigned long *)userdata;
u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
u32 ltr_reg;
int pos;
if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
return 0;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
if (!pos)
goto out_state_change;
/*
* Skip if the max snoop LTR is non-zero, indicating BIOS has set it
* so the LTR quirk is not needed.
*/
pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, &ltr_reg);
if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
goto out_state_change;
/*
* Set the default values to the maximum required by the platform to
* allow the deepest power management savings. Write as a DWORD where
* the lower word is the max snoop latency and the upper word is the
* max non-snoop latency.
*/
ltr_reg = (ltr << 16) | ltr;
pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
pci_info(pdev, "VMD: Default LTR value set by driver\n");
out_state_change:
/*
* Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
* PCIe r6.0, sec 5.5.4.
*/
pci_set_power_state_locked(pdev, PCI_D0);
pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
return 0;
}
static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
{
struct pci_sysdata *sd = &vmd->sysdata;
struct resource *res;
u32 upper_bits;
unsigned long flags;
LIST_HEAD(resources);
resource_size_t offset[2] = {0};
resource_size_t membar2_offset = 0x2000;
struct pci_bus *child;
struct pci_dev *dev;
int ret;
/*
* Shadow registers may exist in certain VMD device ids which allow
* guests to correctly assign host physical addresses to the root ports
* and child devices. These registers will either return the host value
* or 0, depending on an enable bit in the VMD device.
*/
if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
if (ret)
return ret;
} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
if (ret)
return ret;
}
/*
* Certain VMD devices may have a root port configuration option which
* limits the bus range to between 0-127, 128-255, or 224-255
*/
if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
ret = vmd_get_bus_number_start(vmd);
if (ret)
return ret;
}
res = &vmd->dev->resource[VMD_CFGBAR];
vmd->resources[0] = (struct resource) {
.name = "VMD CFGBAR",
.start = vmd->busn_start,
.end = vmd->busn_start + (resource_size(res) >> 20) - 1,
.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
};
/*
* If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
* put 32-bit resources in the window.
*
* There's no hardware reason why a 64-bit window *couldn't*
* contain a 32-bit resource, but pbus_size_mem() computes the
* bridge window size assuming a 64-bit window will contain no
* 32-bit resources. __pci_assign_resource() enforces that
* artificial restriction to make sure everything will fit.
*
* The only way we could use a 64-bit non-prefetchable MEMBAR is
* if its address is <4GB so that we can convert it to a 32-bit
* resource. To be visible to the host OS, all VMD endpoints must
* be initially configured by platform BIOS, which includes setting
* up these resources. We can assume the device is configured
* according to the platform needs.
*/
res = &vmd->dev->resource[VMD_MEMBAR1];
upper_bits = upper_32_bits(res->end);
flags = res->flags & ~IORESOURCE_SIZEALIGN;
if (!upper_bits)
flags &= ~IORESOURCE_MEM_64;
vmd->resources[1] = (struct resource) {
.name = "VMD MEMBAR1",
.start = res->start,
.end = res->end,
.flags = flags,
.parent = res,
};
res = &vmd->dev->resource[VMD_MEMBAR2];
upper_bits = upper_32_bits(res->end);
flags = res->flags & ~IORESOURCE_SIZEALIGN;
if (!upper_bits)
flags &= ~IORESOURCE_MEM_64;
vmd->resources[2] = (struct resource) {
.name = "VMD MEMBAR2",
.start = res->start + membar2_offset,
.end = res->end,
.flags = flags,
.parent = res,
};
/*
* Currently MSI remapping must be enabled in guest passthrough mode
* due to some missing interrupt remapping plumbing. This is probably
* acceptable because the guest is usually CPU-limited and MSI
* remapping doesn't become a performance bottleneck.
*/
if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
offset[0] || offset[1]) {
ret = vmd_alloc_irqs(vmd);
if (ret)
return ret;
vmd_set_msi_remapping(vmd, true);
ret = vmd_create_irq_domain(vmd);
if (ret)
return ret;
} else {
vmd_set_msi_remapping(vmd, false);
}
pci_add_resource(&resources, &vmd->resources[0]);
pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
sd->vmd_dev = vmd->dev;
/*
* Emulated domains start at 0x10000 to not clash with ACPI _SEG
* domains. Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of
* which the lower 16 bits are the PCI Segment Group (domain) number.
* Other bits are currently reserved.
*/
sd->domain = pci_bus_find_emul_domain_nr(0, 0x10000, INT_MAX);
if (sd->domain < 0)
return sd->domain;
sd->node = pcibus_to_node(vmd->dev->bus);
vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
&vmd_ops, sd, &resources);
if (!vmd->bus) {
pci_bus_release_emul_domain_nr(sd->domain);
pci_free_resource_list(&resources);
vmd_remove_irq_domain(vmd);
return -ENODEV;
}
vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
to_pci_host_bridge(vmd->bus->bridge));
vmd_attach_resources(vmd);
if (vmd->irq_domain)
dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
else
dev_set_msi_domain(&vmd->bus->dev,
dev_get_msi_domain(&vmd->dev->dev));
WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
"domain"), "Can't create symlink to domain\n");
vmd_acpi_begin();
pci_scan_child_bus(vmd->bus);
vmd_domain_reset(vmd);
/* When Intel VMD is enabled, the OS does not discover the Root Ports
* owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
* a reset to the parent of the PCI device supplied as argument. This
* is why we pass a child device, so the reset can be triggered at
* the Intel bridge level and propagated to all the children in the
* hierarchy.
*/
list_for_each_entry(child, &vmd->bus->children, node) {
if (!list_empty(&child->devices)) {
dev = list_first_entry(&child->devices,
struct pci_dev, bus_list);
ret = pci_reset_bus(dev);
if (ret)
pci_warn(dev, "can't reset device: %d\n", ret);
break;
}
}
pci_assign_unassigned_bus_resources(vmd->bus);
pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
/*
* VMD root buses are virtual and don't return true on pci_is_pcie()
* and will fail pcie_bus_configure_settings() early. It can instead be
* run on each of the real root ports.
*/
list_for_each_entry(child, &vmd->bus->children, node)
pcie_bus_configure_settings(child);
pci_bus_add_devices(vmd->bus);
vmd_acpi_end();
return 0;
}
static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
unsigned long features = (unsigned long) id->driver_data;
struct vmd_dev *vmd;
int err;
if (xen_domain()) {
/*
* Xen doesn't have knowledge about devices in the VMD bus
* because the config space of devices behind the VMD bridge is
* not known to Xen, and hence Xen cannot discover or configure
* them in any way.
*
* Bypass of MSI remapping won't work in that case as direct
* write by Linux to the MSI entries won't result in functional
* interrupts, as Xen is the entity that manages the host
* interrupt controller and must configure interrupts. However
* multiplexing of interrupts by the VMD bridge will work under
* Xen, so force the usage of that mode which must always be
* supported by VMD bridges.
*/
features &= ~VMD_FEAT_CAN_BYPASS_MSI_REMAP;
}
if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
return -ENOMEM;
vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
if (!vmd)
return -ENOMEM;
vmd->dev = dev;
vmd->sysdata.domain = PCI_DOMAIN_NR_NOT_SET;
vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
if (vmd->instance < 0)
return vmd->instance;
vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
vmd->instance);
if (!vmd->name) {
err = -ENOMEM;
goto out_release_instance;
}
err = pcim_enable_device(dev);
if (err < 0)
goto out_release_instance;
vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
if (!vmd->cfgbar) {
err = -ENOMEM;
goto out_release_instance;
}
pci_set_master(dev);
if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
err = -ENODEV;
goto out_release_instance;
}
if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
vmd->first_vec = 1;
raw_spin_lock_init(&vmd->cfg_lock);
pci_set_drvdata(dev, vmd);
err = vmd_enable_domain(vmd, features);
if (err)
goto out_release_instance;
dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
vmd->sysdata.domain);
return 0;
out_release_instance:
ida_free(&vmd_instance_ida, vmd->instance);
return err;
}
static void vmd_cleanup_srcu(struct vmd_dev *vmd)
{
int i;
for (i = 0; i < vmd->msix_count; i++)
cleanup_srcu_struct(&vmd->irqs[i].srcu);
}
static void vmd_remove(struct pci_dev *dev)
{
struct vmd_dev *vmd = pci_get_drvdata(dev);
pci_stop_root_bus(vmd->bus);
sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
pci_remove_root_bus(vmd->bus);
vmd_cleanup_srcu(vmd);
vmd_detach_resources(vmd);
vmd_remove_irq_domain(vmd);
ida_free(&vmd_instance_ida, vmd->instance);
pci_bus_release_emul_domain_nr(vmd->sysdata.domain);
}
static void vmd_shutdown(struct pci_dev *dev)
{
struct vmd_dev *vmd = pci_get_drvdata(dev);
vmd_remove_irq_domain(vmd);
}
#ifdef CONFIG_PM_SLEEP
static int vmd_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct vmd_dev *vmd = pci_get_drvdata(pdev);
int i;
for (i = 0; i < vmd->msix_count; i++)
devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
return 0;
}
static int vmd_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct vmd_dev *vmd = pci_get_drvdata(pdev);
int err, i;
vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
for (i = 0; i < vmd->msix_count; i++) {
err = devm_request_irq(dev, vmd->irqs[i].virq,
vmd_irq, IRQF_NO_THREAD,
vmd->name, &vmd->irqs[i]);
if (err)
return err;
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
static const struct pci_device_id vmd_ids[] = {
{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
VMD_FEAT_HAS_BUS_RESTRICTIONS |
VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
{PCI_VDEVICE(INTEL, 0x467f),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0x4c3d),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0xa77f),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0x7d0b),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0xad0b),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0xb60b),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0xb06f),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0xb07f),
.driver_data = VMD_FEATS_CLIENT,},
{0,}
};
MODULE_DEVICE_TABLE(pci, vmd_ids);
static struct pci_driver vmd_drv = {
.name = "vmd",
.id_table = vmd_ids,
.probe = vmd_probe,
.remove = vmd_remove,
.shutdown = vmd_shutdown,
.driver = {
.pm = &vmd_dev_pm_ops,
},
};
module_pci_driver(vmd_drv);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("Volume Management Device driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.6");