Files
linux/drivers/gpib/eastwood/fluke_gpib.c
Dave Penkler e6ab504633 staging: gpib: Destage gpib
Move the gpib drivers out of staging and into the "real" part of the
kernel.  This entails:

 - Remove the gpib Kconfig menu and Makefile build rule from staging.
 - Remove gpib/uapi from the header file search path in subdir-ccflags
   of the gpib Makefile
 - move the gpib/uapi files to include/uapi/linux
 - Move the gpib tree out of staging to drivers.
 - Remove the word "Linux" from the gpib Kconfig file.
 - Add the gpib Kconfig menu and Makefile build rule to drivers

Signed-off-by: Dave Penkler <dpenkler@gmail.com>
Link: https://patch.msgid.link/20251117144021.23569-5-dpenkler@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-11-24 17:52:11 +01:00

1181 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/***************************************************************************
* GPIB Driver for Fluke cda devices. Basically, its a driver for a (bugfixed)
* cb7210 connected to channel 0 of a pl330 dma controller.
* Author: Frank Mori Hess <fmh6jj@gmail.com>
* copyright: (C) 2006, 2010, 2015 Fluke Corporation
***************************************************************************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define dev_fmt pr_fmt
#define DRV_NAME KBUILD_MODNAME
#include "fluke_gpib.h"
#include "gpibP.h"
#include <linux/dma-mapping.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GPIB Driver for Fluke cda devices");
static int fluke_attach_holdoff_all(struct gpib_board *board,
const struct gpib_board_config *config);
static int fluke_attach_holdoff_end(struct gpib_board *board,
const struct gpib_board_config *config);
static void fluke_detach(struct gpib_board *board);
static int fluke_config_dma(struct gpib_board *board, int output);
static irqreturn_t fluke_gpib_internal_interrupt(struct gpib_board *board);
static struct platform_device *fluke_gpib_pdev;
static u8 fluke_locking_read_byte(struct nec7210_priv *nec_priv, unsigned int register_number)
{
u8 retval;
unsigned long flags;
spin_lock_irqsave(&nec_priv->register_page_lock, flags);
retval = fluke_read_byte_nolock(nec_priv, register_number);
spin_unlock_irqrestore(&nec_priv->register_page_lock, flags);
return retval;
}
static void fluke_locking_write_byte(struct nec7210_priv *nec_priv, u8 byte,
unsigned int register_number)
{
unsigned long flags;
spin_lock_irqsave(&nec_priv->register_page_lock, flags);
fluke_write_byte_nolock(nec_priv, byte, register_number);
spin_unlock_irqrestore(&nec_priv->register_page_lock, flags);
}
// wrappers for interface functions
static int fluke_read(struct gpib_board *board, u8 *buffer, size_t length, int *end,
size_t *bytes_read)
{
struct fluke_priv *priv = board->private_data;
return nec7210_read(board, &priv->nec7210_priv, buffer, length, end, bytes_read);
}
static int fluke_write(struct gpib_board *board, u8 *buffer, size_t length,
int send_eoi, size_t *bytes_written)
{
struct fluke_priv *priv = board->private_data;
return nec7210_write(board, &priv->nec7210_priv, buffer, length, send_eoi, bytes_written);
}
static int fluke_command(struct gpib_board *board, u8 *buffer,
size_t length, size_t *bytes_written)
{
struct fluke_priv *priv = board->private_data;
return nec7210_command(board, &priv->nec7210_priv, buffer, length, bytes_written);
}
static int fluke_take_control(struct gpib_board *board, int synchronous)
{
struct fluke_priv *priv = board->private_data;
return nec7210_take_control(board, &priv->nec7210_priv, synchronous);
}
static int fluke_go_to_standby(struct gpib_board *board)
{
struct fluke_priv *priv = board->private_data;
return nec7210_go_to_standby(board, &priv->nec7210_priv);
}
static int fluke_request_system_control(struct gpib_board *board, int request_control)
{
struct fluke_priv *priv = board->private_data;
struct nec7210_priv *nec_priv = &priv->nec7210_priv;
return nec7210_request_system_control(board, nec_priv, request_control);
}
static void fluke_interface_clear(struct gpib_board *board, int assert)
{
struct fluke_priv *priv = board->private_data;
nec7210_interface_clear(board, &priv->nec7210_priv, assert);
}
static void fluke_remote_enable(struct gpib_board *board, int enable)
{
struct fluke_priv *priv = board->private_data;
nec7210_remote_enable(board, &priv->nec7210_priv, enable);
}
static int fluke_enable_eos(struct gpib_board *board, u8 eos_byte, int compare_8_bits)
{
struct fluke_priv *priv = board->private_data;
return nec7210_enable_eos(board, &priv->nec7210_priv, eos_byte, compare_8_bits);
}
static void fluke_disable_eos(struct gpib_board *board)
{
struct fluke_priv *priv = board->private_data;
nec7210_disable_eos(board, &priv->nec7210_priv);
}
static unsigned int fluke_update_status(struct gpib_board *board, unsigned int clear_mask)
{
struct fluke_priv *priv = board->private_data;
return nec7210_update_status(board, &priv->nec7210_priv, clear_mask);
}
static int fluke_primary_address(struct gpib_board *board, unsigned int address)
{
struct fluke_priv *priv = board->private_data;
return nec7210_primary_address(board, &priv->nec7210_priv, address);
}
static int fluke_secondary_address(struct gpib_board *board, unsigned int address, int enable)
{
struct fluke_priv *priv = board->private_data;
return nec7210_secondary_address(board, &priv->nec7210_priv, address, enable);
}
static int fluke_parallel_poll(struct gpib_board *board, u8 *result)
{
struct fluke_priv *priv = board->private_data;
return nec7210_parallel_poll(board, &priv->nec7210_priv, result);
}
static void fluke_parallel_poll_configure(struct gpib_board *board, u8 configuration)
{
struct fluke_priv *priv = board->private_data;
nec7210_parallel_poll_configure(board, &priv->nec7210_priv, configuration);
}
static void fluke_parallel_poll_response(struct gpib_board *board, int ist)
{
struct fluke_priv *priv = board->private_data;
nec7210_parallel_poll_response(board, &priv->nec7210_priv, ist);
}
static void fluke_serial_poll_response(struct gpib_board *board, u8 status)
{
struct fluke_priv *priv = board->private_data;
nec7210_serial_poll_response(board, &priv->nec7210_priv, status);
}
static u8 fluke_serial_poll_status(struct gpib_board *board)
{
struct fluke_priv *priv = board->private_data;
return nec7210_serial_poll_status(board, &priv->nec7210_priv);
}
static void fluke_return_to_local(struct gpib_board *board)
{
struct fluke_priv *priv = board->private_data;
struct nec7210_priv *nec_priv = &priv->nec7210_priv;
write_byte(nec_priv, AUX_RTL2, AUXMR);
udelay(1);
write_byte(nec_priv, AUX_RTL, AUXMR);
}
static int fluke_line_status(const struct gpib_board *board)
{
int status = VALID_ALL;
int bsr_bits;
struct fluke_priv *e_priv;
e_priv = board->private_data;
bsr_bits = fluke_paged_read_byte(e_priv, BUS_STATUS, BUS_STATUS_PAGE);
if ((bsr_bits & BSR_REN_BIT) == 0)
status |= BUS_REN;
if ((bsr_bits & BSR_IFC_BIT) == 0)
status |= BUS_IFC;
if ((bsr_bits & BSR_SRQ_BIT) == 0)
status |= BUS_SRQ;
if ((bsr_bits & BSR_EOI_BIT) == 0)
status |= BUS_EOI;
if ((bsr_bits & BSR_NRFD_BIT) == 0)
status |= BUS_NRFD;
if ((bsr_bits & BSR_NDAC_BIT) == 0)
status |= BUS_NDAC;
if ((bsr_bits & BSR_DAV_BIT) == 0)
status |= BUS_DAV;
if ((bsr_bits & BSR_ATN_BIT) == 0)
status |= BUS_ATN;
return status;
}
static int fluke_t1_delay(struct gpib_board *board, unsigned int nano_sec)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
unsigned int retval;
retval = nec7210_t1_delay(board, nec_priv, nano_sec);
if (nano_sec <= 350) {
write_byte(nec_priv, AUX_HI_SPEED, AUXMR);
retval = 350;
} else {
write_byte(nec_priv, AUX_LO_SPEED, AUXMR);
}
return retval;
}
static int lacs_or_read_ready(struct gpib_board *board)
{
const struct fluke_priv *e_priv = board->private_data;
const struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
unsigned long flags;
int retval;
spin_lock_irqsave(&board->spinlock, flags);
retval = test_bit(LACS_NUM, &board->status) || test_bit(READ_READY_BN, &nec_priv->state);
spin_unlock_irqrestore(&board->spinlock, flags);
return retval;
}
/*
* Wait until it is possible for a read to do something useful. This
* is not essential, it only exists to prevent RFD holdoff from being released pointlessly.
*/
static int wait_for_read(struct gpib_board *board)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
int retval = 0;
if (wait_event_interruptible(board->wait,
lacs_or_read_ready(board) ||
test_bit(DEV_CLEAR_BN, &nec_priv->state) ||
test_bit(TIMO_NUM, &board->status)))
retval = -ERESTARTSYS;
if (test_bit(TIMO_NUM, &board->status))
retval = -ETIMEDOUT;
if (test_and_clear_bit(DEV_CLEAR_BN, &nec_priv->state))
retval = -EINTR;
return retval;
}
/*
* Check if the SH state machine is in SGNS. We check twice since there is a very small chance
* we could be blowing through SGNS from SIDS to SDYS if there is already a
* byte available in the handshake state machine. We are interested
* in the case where the handshake is stuck in SGNS due to no byte being
* available to the chip (and thus we can be confident a dma transfer will
* result in at least one byte making it into the chip). This matters
* because we want to be confident before sending a "send eoi" auxilary
* command that we will be able to also put the associated data byte
* in the chip before any potential timeout.
*/
static int source_handshake_is_sgns(struct fluke_priv *e_priv)
{
int i;
for (i = 0; i < 2; ++i) {
if ((fluke_paged_read_byte(e_priv, STATE1_REG, STATE1_PAGE) &
SOURCE_HANDSHAKE_MASK) != SOURCE_HANDSHAKE_SGNS_BITS) {
return 0;
}
}
return 1;
}
static int source_handshake_is_sids_or_sgns(struct fluke_priv *e_priv)
{
unsigned int source_handshake_bits;
source_handshake_bits = fluke_paged_read_byte(e_priv, STATE1_REG, STATE1_PAGE) &
SOURCE_HANDSHAKE_MASK;
return (source_handshake_bits == SOURCE_HANDSHAKE_SGNS_BITS) ||
(source_handshake_bits == SOURCE_HANDSHAKE_SIDS_BITS);
}
/*
* Wait until the gpib chip is ready to accept a data out byte.
* If the chip is SGNS it is probably waiting for a a byte to
* be written to it.
*/
static int wait_for_data_out_ready(struct gpib_board *board)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
int retval = 0;
if (wait_event_interruptible(board->wait,
(test_bit(TACS_NUM, &board->status) &&
source_handshake_is_sgns(e_priv)) ||
test_bit(DEV_CLEAR_BN, &nec_priv->state) ||
test_bit(TIMO_NUM, &board->status)))
retval = -ERESTARTSYS;
if (test_bit(TIMO_NUM, &board->status))
retval = -ETIMEDOUT;
if (test_and_clear_bit(DEV_CLEAR_BN, &nec_priv->state))
retval = -EINTR;
return retval;
}
static int wait_for_sids_or_sgns(struct gpib_board *board)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
int retval = 0;
if (wait_event_interruptible(board->wait,
source_handshake_is_sids_or_sgns(e_priv) ||
test_bit(DEV_CLEAR_BN, &nec_priv->state) ||
test_bit(TIMO_NUM, &board->status)))
retval = -ERESTARTSYS;
if (test_bit(TIMO_NUM, &board->status))
retval = -ETIMEDOUT;
if (test_and_clear_bit(DEV_CLEAR_BN, &nec_priv->state))
retval = -EINTR;
return retval;
}
static void fluke_dma_callback(void *arg)
{
struct gpib_board *board = arg;
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
unsigned long flags;
spin_lock_irqsave(&board->spinlock, flags);
nec7210_set_reg_bits(nec_priv, IMR1, HR_DOIE | HR_DIIE, HR_DOIE | HR_DIIE);
wake_up_interruptible(&board->wait);
fluke_gpib_internal_interrupt(board);
clear_bit(DMA_WRITE_IN_PROGRESS_BN, &nec_priv->state);
clear_bit(DMA_READ_IN_PROGRESS_BN, &nec_priv->state);
spin_unlock_irqrestore(&board->spinlock, flags);
}
static int fluke_dma_write(struct gpib_board *board, u8 *buffer, size_t length,
size_t *bytes_written)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
unsigned long flags;
int retval = 0;
dma_addr_t address;
struct dma_async_tx_descriptor *tx_desc;
*bytes_written = 0;
if (WARN_ON_ONCE(length > e_priv->dma_buffer_size))
return -EFAULT;
dmaengine_terminate_all(e_priv->dma_channel);
// write-clear counter
writel(0x0, e_priv->write_transfer_counter);
memcpy(e_priv->dma_buffer, buffer, length);
address = dma_map_single(board->dev, e_priv->dma_buffer,
length, DMA_TO_DEVICE);
/* program dma controller */
retval = fluke_config_dma(board, 1);
if (retval)
goto cleanup;
tx_desc = dmaengine_prep_slave_single(e_priv->dma_channel, address, length, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_desc) {
dev_err(board->gpib_dev, "failed to allocate dma transmit descriptor\n");
retval = -ENOMEM;
goto cleanup;
}
tx_desc->callback = fluke_dma_callback;
tx_desc->callback_param = board;
spin_lock_irqsave(&board->spinlock, flags);
nec7210_set_reg_bits(nec_priv, IMR1, HR_DOIE, 0);
nec7210_set_reg_bits(nec_priv, IMR2, HR_DMAO, HR_DMAO);
dmaengine_submit(tx_desc);
dma_async_issue_pending(e_priv->dma_channel);
clear_bit(WRITE_READY_BN, &nec_priv->state);
set_bit(DMA_WRITE_IN_PROGRESS_BN, &nec_priv->state);
spin_unlock_irqrestore(&board->spinlock, flags);
// suspend until message is sent
if (wait_event_interruptible(board->wait,
((readl(e_priv->write_transfer_counter) &
write_transfer_counter_mask) == length) ||
test_bit(BUS_ERROR_BN, &nec_priv->state) ||
test_bit(DEV_CLEAR_BN, &nec_priv->state) ||
test_bit(TIMO_NUM, &board->status))) {
retval = -ERESTARTSYS;
}
if (test_bit(TIMO_NUM, &board->status))
retval = -ETIMEDOUT;
if (test_and_clear_bit(DEV_CLEAR_BN, &nec_priv->state))
retval = -EINTR;
if (test_and_clear_bit(BUS_ERROR_BN, &nec_priv->state))
retval = -EIO;
// disable board's dma
nec7210_set_reg_bits(nec_priv, IMR2, HR_DMAO, 0);
dmaengine_terminate_all(e_priv->dma_channel);
// make sure fluke_dma_callback got called
if (test_bit(DMA_WRITE_IN_PROGRESS_BN, &nec_priv->state))
fluke_dma_callback(board);
/*
* if everything went fine, try to wait until last byte is actually
* transmitted across gpib (but don't try _too_ hard)
*/
if (retval == 0)
retval = wait_for_sids_or_sgns(board);
*bytes_written = readl(e_priv->write_transfer_counter) & write_transfer_counter_mask;
if (WARN_ON_ONCE(*bytes_written > length))
return -EFAULT;
cleanup:
dma_unmap_single(board->dev, address, length, DMA_TO_DEVICE);
return retval;
}
static int fluke_accel_write(struct gpib_board *board, u8 *buffer, size_t length,
int send_eoi, size_t *bytes_written)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
size_t remainder = length;
size_t transfer_size;
ssize_t retval = 0;
size_t dma_remainder = remainder;
if (!e_priv->dma_channel) {
dev_err(board->gpib_dev, "No dma channel available, cannot do accel write.");
return -ENXIO;
}
*bytes_written = 0;
if (length < 1)
return 0;
clear_bit(DEV_CLEAR_BN, &nec_priv->state); // XXX FIXME
if (send_eoi)
--dma_remainder;
while (dma_remainder > 0) {
size_t num_bytes;
retval = wait_for_data_out_ready(board);
if (retval < 0)
break;
transfer_size = (e_priv->dma_buffer_size < dma_remainder) ?
e_priv->dma_buffer_size : dma_remainder;
retval = fluke_dma_write(board, buffer, transfer_size, &num_bytes);
*bytes_written += num_bytes;
if (retval < 0)
break;
dma_remainder -= num_bytes;
remainder -= num_bytes;
buffer += num_bytes;
if (need_resched())
schedule();
}
if (retval < 0)
return retval;
// handle sending of last byte with eoi
if (send_eoi) {
size_t num_bytes;
if (WARN_ON_ONCE(remainder != 1))
return -EFAULT;
/*
* wait until we are sure we will be able to write the data byte
* into the chip before we send AUX_SEOI. This prevents a timeout
* scenerio where we send AUX_SEOI but then timeout without getting
* any bytes into the gpib chip. This will result in the first byte
* of the next write having a spurious EOI set on the first byte.
*/
retval = wait_for_data_out_ready(board);
if (retval < 0)
return retval;
write_byte(nec_priv, AUX_SEOI, AUXMR);
retval = fluke_dma_write(board, buffer, remainder, &num_bytes);
*bytes_written += num_bytes;
if (retval < 0)
return retval;
remainder -= num_bytes;
}
return 0;
}
static int fluke_get_dma_residue(struct dma_chan *chan, dma_cookie_t cookie)
{
struct dma_tx_state state;
int result;
result = dmaengine_pause(chan);
if (result < 0) {
pr_err("dma pause failed?\n");
return result;
}
dmaengine_tx_status(chan, cookie, &state);
/*
* hardware doesn't support resume, so dont call this
* method unless the dma transfer is done.
*/
return state.residue;
}
static int fluke_dma_read(struct gpib_board *board, u8 *buffer,
size_t length, int *end, size_t *bytes_read)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
int retval = 0;
unsigned long flags;
int residue;
dma_addr_t bus_address;
struct dma_async_tx_descriptor *tx_desc;
dma_cookie_t dma_cookie;
int i;
static const int timeout = 10;
*bytes_read = 0;
*end = 0;
if (length == 0)
return 0;
bus_address = dma_map_single(board->dev, e_priv->dma_buffer,
length, DMA_FROM_DEVICE);
/* program dma controller */
retval = fluke_config_dma(board, 0);
if (retval) {
dma_unmap_single(board->dev, bus_address, length, DMA_FROM_DEVICE);
return retval;
}
tx_desc = dmaengine_prep_slave_single(e_priv->dma_channel,
bus_address, length, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_desc) {
dev_err(board->gpib_dev, "failed to allocate dma transmit descriptor\n");
dma_unmap_single(NULL, bus_address, length, DMA_FROM_DEVICE);
return -EIO;
}
tx_desc->callback = fluke_dma_callback;
tx_desc->callback_param = board;
spin_lock_irqsave(&board->spinlock, flags);
// enable nec7210 dma
nec7210_set_reg_bits(nec_priv, IMR1, HR_DIIE, 0);
nec7210_set_reg_bits(nec_priv, IMR2, HR_DMAI, HR_DMAI);
dma_cookie = dmaengine_submit(tx_desc);
dma_async_issue_pending(e_priv->dma_channel);
set_bit(DMA_READ_IN_PROGRESS_BN, &nec_priv->state);
clear_bit(READ_READY_BN, &nec_priv->state);
spin_unlock_irqrestore(&board->spinlock, flags);
// wait for data to transfer
if (wait_event_interruptible(board->wait,
test_bit(DMA_READ_IN_PROGRESS_BN, &nec_priv->state) == 0 ||
test_bit(RECEIVED_END_BN, &nec_priv->state) ||
test_bit(DEV_CLEAR_BN, &nec_priv->state) ||
test_bit(TIMO_NUM, &board->status))) {
retval = -ERESTARTSYS;
}
if (test_bit(TIMO_NUM, &board->status))
retval = -ETIMEDOUT;
if (test_bit(DEV_CLEAR_BN, &nec_priv->state))
retval = -EINTR;
/*
* If we woke up because of end, wait until the dma transfer has pulled
* the data byte associated with the end before we cancel the dma transfer.
*/
if (test_bit(RECEIVED_END_BN, &nec_priv->state)) {
for (i = 0; i < timeout; ++i) {
if (test_bit(DMA_READ_IN_PROGRESS_BN, &nec_priv->state) == 0)
break;
if ((read_byte(nec_priv, ADR0) & DATA_IN_STATUS) == 0)
break;
usleep_range(10, 15);
}
if (i == timeout)
pr_warn("fluke_gpib: timeout waiting for dma to transfer end data byte.\n");
}
// stop the dma transfer
nec7210_set_reg_bits(nec_priv, IMR2, HR_DMAI, 0);
/*
* delay a little just to make sure any bytes in dma controller's fifo get
* written to memory before we disable it
*/
usleep_range(10, 15);
residue = fluke_get_dma_residue(e_priv->dma_channel, dma_cookie);
if (WARN_ON_ONCE(residue > length || residue < 0))
return -EFAULT;
*bytes_read += length - residue;
dmaengine_terminate_all(e_priv->dma_channel);
// make sure fluke_dma_callback got called
if (test_bit(DMA_READ_IN_PROGRESS_BN, &nec_priv->state))
fluke_dma_callback(board);
dma_unmap_single(board->dev, bus_address, length, DMA_FROM_DEVICE);
memcpy(buffer, e_priv->dma_buffer, *bytes_read);
/*
* If we got an end interrupt, figure out if it was
* associated with the last byte we dma'd or with a
* byte still sitting on the cb7210.
*/
spin_lock_irqsave(&board->spinlock, flags);
if (test_bit(READ_READY_BN, &nec_priv->state) == 0) {
/*
* There is no byte sitting on the cb7210. If we
* saw an end interrupt, we need to deal with it now
*/
if (test_and_clear_bit(RECEIVED_END_BN, &nec_priv->state))
*end = 1;
}
spin_unlock_irqrestore(&board->spinlock, flags);
return retval;
}
static int fluke_accel_read(struct gpib_board *board, u8 *buffer, size_t length,
int *end, size_t *bytes_read)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
size_t remain = length;
size_t transfer_size;
int retval = 0;
size_t dma_nbytes;
*end = 0;
*bytes_read = 0;
smp_mb__before_atomic();
clear_bit(DEV_CLEAR_BN, &nec_priv->state); // XXX FIXME
smp_mb__after_atomic();
retval = wait_for_read(board);
if (retval < 0)
return retval;
nec7210_release_rfd_holdoff(board, nec_priv);
while (remain > 0) {
transfer_size = (e_priv->dma_buffer_size < remain) ?
e_priv->dma_buffer_size : remain;
retval = fluke_dma_read(board, buffer, transfer_size, end, &dma_nbytes);
remain -= dma_nbytes;
buffer += dma_nbytes;
*bytes_read += dma_nbytes;
if (*end)
break;
if (retval < 0)
return retval;
if (need_resched())
schedule();
}
return retval;
}
static struct gpib_interface fluke_unaccel_interface = {
.name = "fluke_unaccel",
.attach = fluke_attach_holdoff_all,
.detach = fluke_detach,
.read = fluke_read,
.write = fluke_write,
.command = fluke_command,
.take_control = fluke_take_control,
.go_to_standby = fluke_go_to_standby,
.request_system_control = fluke_request_system_control,
.interface_clear = fluke_interface_clear,
.remote_enable = fluke_remote_enable,
.enable_eos = fluke_enable_eos,
.disable_eos = fluke_disable_eos,
.parallel_poll = fluke_parallel_poll,
.parallel_poll_configure = fluke_parallel_poll_configure,
.parallel_poll_response = fluke_parallel_poll_response,
.line_status = fluke_line_status,
.update_status = fluke_update_status,
.primary_address = fluke_primary_address,
.secondary_address = fluke_secondary_address,
.serial_poll_response = fluke_serial_poll_response,
.serial_poll_status = fluke_serial_poll_status,
.t1_delay = fluke_t1_delay,
.return_to_local = fluke_return_to_local,
};
/*
* fluke_hybrid uses dma for writes but not for reads. Added
* to deal with occasional corruption of bytes seen when doing dma
* reads. From looking at the cb7210 vhdl, I believe the corruption
* is due to a hardware bug triggered by the cpu reading a cb7210
* }
* register just as the dma controller is also doing a read.
*/
static struct gpib_interface fluke_hybrid_interface = {
.name = "fluke_hybrid",
.attach = fluke_attach_holdoff_all,
.detach = fluke_detach,
.read = fluke_read,
.write = fluke_accel_write,
.command = fluke_command,
.take_control = fluke_take_control,
.go_to_standby = fluke_go_to_standby,
.request_system_control = fluke_request_system_control,
.interface_clear = fluke_interface_clear,
.remote_enable = fluke_remote_enable,
.enable_eos = fluke_enable_eos,
.disable_eos = fluke_disable_eos,
.parallel_poll = fluke_parallel_poll,
.parallel_poll_configure = fluke_parallel_poll_configure,
.parallel_poll_response = fluke_parallel_poll_response,
.line_status = fluke_line_status,
.update_status = fluke_update_status,
.primary_address = fluke_primary_address,
.secondary_address = fluke_secondary_address,
.serial_poll_response = fluke_serial_poll_response,
.serial_poll_status = fluke_serial_poll_status,
.t1_delay = fluke_t1_delay,
.return_to_local = fluke_return_to_local,
};
static struct gpib_interface fluke_interface = {
.name = "fluke",
.attach = fluke_attach_holdoff_end,
.detach = fluke_detach,
.read = fluke_accel_read,
.write = fluke_accel_write,
.command = fluke_command,
.take_control = fluke_take_control,
.go_to_standby = fluke_go_to_standby,
.request_system_control = fluke_request_system_control,
.interface_clear = fluke_interface_clear,
.remote_enable = fluke_remote_enable,
.enable_eos = fluke_enable_eos,
.disable_eos = fluke_disable_eos,
.parallel_poll = fluke_parallel_poll,
.parallel_poll_configure = fluke_parallel_poll_configure,
.parallel_poll_response = fluke_parallel_poll_response,
.line_status = fluke_line_status,
.update_status = fluke_update_status,
.primary_address = fluke_primary_address,
.secondary_address = fluke_secondary_address,
.serial_poll_response = fluke_serial_poll_response,
.serial_poll_status = fluke_serial_poll_status,
.t1_delay = fluke_t1_delay,
.return_to_local = fluke_return_to_local,
};
irqreturn_t fluke_gpib_internal_interrupt(struct gpib_board *board)
{
int status0, status1, status2;
struct fluke_priv *priv = board->private_data;
struct nec7210_priv *nec_priv = &priv->nec7210_priv;
int retval = IRQ_NONE;
if (read_byte(nec_priv, ADR0) & DATA_IN_STATUS)
set_bit(READ_READY_BN, &nec_priv->state);
status0 = fluke_paged_read_byte(priv, ISR0_IMR0, ISR0_IMR0_PAGE);
status1 = read_byte(nec_priv, ISR1);
status2 = read_byte(nec_priv, ISR2);
if (status0 & FLUKE_IFCI_BIT) {
push_gpib_event(board, EVENT_IFC);
retval = IRQ_HANDLED;
}
if (nec7210_interrupt_have_status(board, nec_priv, status1, status2) == IRQ_HANDLED)
retval = IRQ_HANDLED;
if (read_byte(nec_priv, ADR0) & DATA_IN_STATUS) {
if (test_bit(RFD_HOLDOFF_BN, &nec_priv->state))
set_bit(READ_READY_BN, &nec_priv->state);
else
clear_bit(READ_READY_BN, &nec_priv->state);
}
if (retval == IRQ_HANDLED)
wake_up_interruptible(&board->wait);
return retval;
}
static irqreturn_t fluke_gpib_interrupt(int irq, void *arg)
{
struct gpib_board *board = arg;
unsigned long flags;
irqreturn_t retval;
spin_lock_irqsave(&board->spinlock, flags);
retval = fluke_gpib_internal_interrupt(board);
spin_unlock_irqrestore(&board->spinlock, flags);
return retval;
}
static int fluke_allocate_private(struct gpib_board *board)
{
struct fluke_priv *priv;
board->private_data = kmalloc(sizeof(struct fluke_priv), GFP_KERNEL);
if (!board->private_data)
return -ENOMEM;
priv = board->private_data;
memset(priv, 0, sizeof(struct fluke_priv));
init_nec7210_private(&priv->nec7210_priv);
priv->dma_buffer_size = 0x7ff;
priv->dma_buffer = kmalloc(priv->dma_buffer_size, GFP_KERNEL);
if (!priv->dma_buffer)
return -ENOMEM;
return 0;
}
static void fluke_generic_detach(struct gpib_board *board)
{
if (board->private_data) {
struct fluke_priv *e_priv = board->private_data;
kfree(e_priv->dma_buffer);
kfree(board->private_data);
board->private_data = NULL;
}
}
// generic part of attach functions shared by all cb7210 boards
static int fluke_generic_attach(struct gpib_board *board)
{
struct fluke_priv *e_priv;
struct nec7210_priv *nec_priv;
int retval;
board->status = 0;
retval = fluke_allocate_private(board);
if (retval < 0)
return retval;
e_priv = board->private_data;
nec_priv = &e_priv->nec7210_priv;
nec_priv->read_byte = fluke_locking_read_byte;
nec_priv->write_byte = fluke_locking_write_byte;
nec_priv->offset = fluke_reg_offset;
nec_priv->type = CB7210;
return 0;
}
static int fluke_config_dma(struct gpib_board *board, int output)
{
struct fluke_priv *e_priv = board->private_data;
struct dma_slave_config config;
config.src_maxburst = 1;
config.dst_maxburst = 1;
config.device_fc = true;
if (output) {
config.direction = DMA_MEM_TO_DEV;
config.src_addr = 0;
config.dst_addr = e_priv->dma_port_res->start;
config.src_addr_width = 1;
config.dst_addr_width = 1;
} else {
config.direction = DMA_DEV_TO_MEM;
config.src_addr = e_priv->dma_port_res->start;
config.dst_addr = 0;
config.src_addr_width = 1;
config.dst_addr_width = 1;
}
return dmaengine_slave_config(e_priv->dma_channel, &config);
}
static int fluke_init(struct fluke_priv *e_priv, struct gpib_board *board, int handshake_mode)
{
struct nec7210_priv *nec_priv = &e_priv->nec7210_priv;
nec7210_board_reset(nec_priv, board);
write_byte(nec_priv, AUX_LO_SPEED, AUXMR);
/*
* set clock register for driving frequency
* ICR should be set to clock in megahertz (1-15) and to zero
* for clocks faster than 15 MHz (max 20MHz)
*/
write_byte(nec_priv, ICR | 10, AUXMR);
nec7210_set_handshake_mode(board, nec_priv, handshake_mode);
nec7210_board_online(nec_priv, board);
/* poll so we can detect ATN changes */
if (gpib_request_pseudo_irq(board, fluke_gpib_interrupt)) {
dev_err(board->gpib_dev, "failed to allocate pseudo_irq\n");
return -EINVAL;
}
fluke_paged_write_byte(e_priv, FLUKE_IFCIE_BIT, ISR0_IMR0, ISR0_IMR0_PAGE);
return 0;
}
/*
* This function is passed to dma_request_channel() in order to
* select the pl330 dma channel which has been hardwired to
* the gpib controller.
*/
static bool gpib_dma_channel_filter(struct dma_chan *chan, void *filter_param)
{
// select the channel which is wired to the gpib chip
return chan->chan_id == 0;
}
static int fluke_attach_impl(struct gpib_board *board, const struct gpib_board_config *config,
unsigned int handshake_mode)
{
struct fluke_priv *e_priv;
struct nec7210_priv *nec_priv;
int isr_flags = 0;
int retval;
int irq;
struct resource *res;
dma_cap_mask_t dma_cap;
if (!fluke_gpib_pdev) {
dev_err(board->gpib_dev, "No fluke device was found, attach failed.\n");
return -ENODEV;
}
retval = fluke_generic_attach(board);
if (retval)
return retval;
e_priv = board->private_data;
nec_priv = &e_priv->nec7210_priv;
nec_priv->offset = fluke_reg_offset;
board->dev = &fluke_gpib_pdev->dev;
res = platform_get_resource(fluke_gpib_pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&fluke_gpib_pdev->dev, "Unable to locate mmio resource\n");
return -ENODEV;
}
if (request_mem_region(res->start,
resource_size(res),
fluke_gpib_pdev->name) == NULL) {
dev_err(&fluke_gpib_pdev->dev, "cannot claim registers\n");
return -ENXIO;
}
e_priv->gpib_iomem_res = res;
nec_priv->mmiobase = ioremap(e_priv->gpib_iomem_res->start,
resource_size(e_priv->gpib_iomem_res));
if (!nec_priv->mmiobase) {
dev_err(&fluke_gpib_pdev->dev, "Could not map I/O memory\n");
return -ENOMEM;
}
res = platform_get_resource(fluke_gpib_pdev, IORESOURCE_MEM, 1);
if (!res) {
dev_err(&fluke_gpib_pdev->dev, "Unable to locate mmio resource for gpib dma port\n");
return -ENODEV;
}
if (request_mem_region(res->start,
resource_size(res),
fluke_gpib_pdev->name) == NULL) {
dev_err(&fluke_gpib_pdev->dev, "cannot claim registers\n");
return -ENXIO;
}
e_priv->dma_port_res = res;
res = platform_get_resource(fluke_gpib_pdev, IORESOURCE_MEM, 2);
if (!res) {
dev_err(&fluke_gpib_pdev->dev, "Unable to locate mmio resource for write transfer counter\n");
return -ENODEV;
}
if (request_mem_region(res->start,
resource_size(res),
fluke_gpib_pdev->name) == NULL) {
dev_err(&fluke_gpib_pdev->dev, "cannot claim registers\n");
return -ENXIO;
}
e_priv->write_transfer_counter_res = res;
e_priv->write_transfer_counter = ioremap(e_priv->write_transfer_counter_res->start,
resource_size(e_priv->write_transfer_counter_res));
if (!e_priv->write_transfer_counter) {
dev_err(&fluke_gpib_pdev->dev, "Could not map I/O memory\n");
return -ENOMEM;
}
irq = platform_get_irq(fluke_gpib_pdev, 0);
if (irq < 0)
return -EBUSY;
retval = request_irq(irq, fluke_gpib_interrupt, isr_flags, fluke_gpib_pdev->name, board);
if (retval) {
dev_err(&fluke_gpib_pdev->dev,
"cannot register interrupt handler err=%d\n",
retval);
return retval;
}
e_priv->irq = irq;
dma_cap_zero(dma_cap);
dma_cap_set(DMA_SLAVE, dma_cap);
e_priv->dma_channel = dma_request_channel(dma_cap, gpib_dma_channel_filter, NULL);
if (!e_priv->dma_channel) {
dev_err(board->gpib_dev, "failed to allocate a dma channel.\n");
/*
* we don't error out here because unaccel interface will still
* work without dma
*/
}
return fluke_init(e_priv, board, handshake_mode);
}
int fluke_attach_holdoff_all(struct gpib_board *board, const struct gpib_board_config *config)
{
return fluke_attach_impl(board, config, HR_HLDA);
}
int fluke_attach_holdoff_end(struct gpib_board *board, const struct gpib_board_config *config)
{
return fluke_attach_impl(board, config, HR_HLDE);
}
void fluke_detach(struct gpib_board *board)
{
struct fluke_priv *e_priv = board->private_data;
struct nec7210_priv *nec_priv;
if (e_priv) {
if (e_priv->dma_channel)
dma_release_channel(e_priv->dma_channel);
gpib_free_pseudo_irq(board);
nec_priv = &e_priv->nec7210_priv;
if (nec_priv->mmiobase) {
fluke_paged_write_byte(e_priv, 0, ISR0_IMR0, ISR0_IMR0_PAGE);
nec7210_board_reset(nec_priv, board);
}
if (e_priv->irq)
free_irq(e_priv->irq, board);
if (e_priv->write_transfer_counter_res) {
release_mem_region(e_priv->write_transfer_counter_res->start,
resource_size(e_priv->write_transfer_counter_res));
}
if (e_priv->dma_port_res) {
release_mem_region(e_priv->dma_port_res->start,
resource_size(e_priv->dma_port_res));
}
if (e_priv->gpib_iomem_res)
release_mem_region(e_priv->gpib_iomem_res->start,
resource_size(e_priv->gpib_iomem_res));
}
fluke_generic_detach(board);
}
static int fluke_gpib_probe(struct platform_device *pdev)
{
fluke_gpib_pdev = pdev;
return 0;
}
static const struct of_device_id fluke_gpib_of_match[] = {
{ .compatible = "flk,fgpib-4.0"},
{ {0} }
};
MODULE_DEVICE_TABLE(of, fluke_gpib_of_match);
static struct platform_driver fluke_gpib_platform_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = fluke_gpib_of_match,
},
.probe = &fluke_gpib_probe
};
static int __init fluke_init_module(void)
{
int result;
result = platform_driver_register(&fluke_gpib_platform_driver);
if (result) {
pr_err("platform_driver_register failed: error = %d\n", result);
return result;
}
result = gpib_register_driver(&fluke_unaccel_interface, THIS_MODULE);
if (result) {
pr_err("gpib_register_driver failed: error = %d\n", result);
goto err_unaccel;
}
result = gpib_register_driver(&fluke_hybrid_interface, THIS_MODULE);
if (result) {
pr_err("gpib_register_driver failed: error = %d\n", result);
goto err_hybrid;
}
result = gpib_register_driver(&fluke_interface, THIS_MODULE);
if (result) {
pr_err("gpib_register_driver failed: error = %d\n", result);
goto err_interface;
}
return 0;
err_interface:
gpib_unregister_driver(&fluke_hybrid_interface);
err_hybrid:
gpib_unregister_driver(&fluke_unaccel_interface);
err_unaccel:
platform_driver_unregister(&fluke_gpib_platform_driver);
return result;
}
static void __exit fluke_exit_module(void)
{
gpib_unregister_driver(&fluke_unaccel_interface);
gpib_unregister_driver(&fluke_hybrid_interface);
gpib_unregister_driver(&fluke_interface);
platform_driver_unregister(&fluke_gpib_platform_driver);
}
module_init(fluke_init_module);
module_exit(fluke_exit_module);