mirror of
https://github.com/torvalds/linux.git
synced 2025-12-07 20:06:24 +00:00
Previously this was initialized with zero which represented PCIe Gen 1.0 instead of using the maximum value from the speed table which is the behaviour of all other smumgr implementations. Fixes:18edef19ea("drm/amd/powerplay: implement fw image related smu interface for Fiji.") Signed-off-by: John Smith <itistotalbotnet@gmail.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> (cherry picked from commitc52238c9fb)
2671 lines
91 KiB
C
2671 lines
91 KiB
C
/*
|
|
* Copyright 2015 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "pp_debug.h"
|
|
#include "smumgr.h"
|
|
#include "smu7_dyn_defaults.h"
|
|
#include "smu73.h"
|
|
#include "smu_ucode_xfer_vi.h"
|
|
#include "fiji_smumgr.h"
|
|
#include "fiji_ppsmc.h"
|
|
#include "smu73_discrete.h"
|
|
#include "ppatomctrl.h"
|
|
#include "smu/smu_7_1_3_d.h"
|
|
#include "smu/smu_7_1_3_sh_mask.h"
|
|
#include "gmc/gmc_8_1_d.h"
|
|
#include "gmc/gmc_8_1_sh_mask.h"
|
|
#include "oss/oss_3_0_d.h"
|
|
#include "gca/gfx_8_0_d.h"
|
|
#include "bif/bif_5_0_d.h"
|
|
#include "bif/bif_5_0_sh_mask.h"
|
|
#include "dce/dce_10_0_d.h"
|
|
#include "dce/dce_10_0_sh_mask.h"
|
|
#include "hardwaremanager.h"
|
|
#include "cgs_common.h"
|
|
#include "atombios.h"
|
|
#include "pppcielanes.h"
|
|
#include "hwmgr.h"
|
|
#include "smu7_hwmgr.h"
|
|
|
|
|
|
#define AVFS_EN_MSB 1568
|
|
#define AVFS_EN_LSB 1568
|
|
|
|
#define FIJI_SMC_SIZE 0x20000
|
|
|
|
#define POWERTUNE_DEFAULT_SET_MAX 1
|
|
#define VDDC_VDDCI_DELTA 300
|
|
#define MC_CG_ARB_FREQ_F1 0x0b
|
|
|
|
/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
|
|
* not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
|
|
*/
|
|
static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
|
|
{600, 1050, 3, 0}, {600, 1050, 6, 1} };
|
|
|
|
/* [FF, SS] type, [] 4 voltage ranges, and
|
|
* [Floor Freq, Boundary Freq, VID min , VID max]
|
|
*/
|
|
static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
|
|
{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
|
|
{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
|
|
|
|
/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
|
|
* (coming from PWR_CKS_CNTL.stretch_amount reg spec)
|
|
*/
|
|
static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
|
|
{0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
|
|
|
|
static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
|
|
/*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
|
|
{1, 0xF, 0xFD,
|
|
/* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
|
|
0x19, 5, 45}
|
|
};
|
|
|
|
static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
|
|
/* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */
|
|
/* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
|
|
{ 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }
|
|
};
|
|
|
|
static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
|
|
/* Wait for smc boot up */
|
|
/* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
|
|
RCU_UC_EVENTS, boot_seq_done, 0); */
|
|
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
|
|
|
|
result = smu7_upload_smu_firmware_image(hwmgr);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Clear status */
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_STATUS, 0);
|
|
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
|
|
|
|
/* De-assert reset */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
|
|
|
|
/* Wait for ROM firmware to initialize interrupt hendler */
|
|
/*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
|
|
SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
|
|
|
|
/* Set SMU Auto Start */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMU_INPUT_DATA, AUTO_START, 1);
|
|
|
|
/* Clear firmware interrupt enable flag */
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixFIRMWARE_FLAGS, 0);
|
|
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
|
|
INTERRUPTS_ENABLED, 1);
|
|
|
|
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test, 0x20000, NULL);
|
|
|
|
/* Wait for done bit to be set */
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
|
|
SMU_STATUS, SMU_DONE, 0);
|
|
|
|
/* Check pass/failed indicator */
|
|
if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMU_STATUS, SMU_PASS) != 1) {
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"SMU Firmware start failed!", return -1);
|
|
}
|
|
|
|
/* Wait for firmware to initialize */
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
|
|
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
|
|
/* wait for smc boot up */
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
|
|
RCU_UC_EVENTS, boot_seq_done, 0);
|
|
|
|
/* Clear firmware interrupt enable flag */
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixFIRMWARE_FLAGS, 0);
|
|
|
|
/* Assert reset */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
|
|
|
|
result = smu7_upload_smu_firmware_image(hwmgr);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Set smc instruct start point at 0x0 */
|
|
smu7_program_jump_on_start(hwmgr);
|
|
|
|
/* Enable clock */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
|
|
|
|
/* De-assert reset */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
|
|
|
|
/* Wait for firmware to initialize */
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
|
|
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
|
|
|
|
if (0 != smu_data->avfs_btc_param) {
|
|
if (0 != smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param,
|
|
NULL)) {
|
|
pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
|
|
result = -EINVAL;
|
|
}
|
|
}
|
|
/* Soft-Reset to reset the engine before loading uCode */
|
|
/* halt */
|
|
cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
|
|
/* reset everything */
|
|
cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
|
|
/* clear reset */
|
|
cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int32_t vr_config;
|
|
uint32_t table_start;
|
|
uint32_t level_addr, vr_config_addr;
|
|
uint32_t level_size = sizeof(avfs_graphics_level);
|
|
|
|
PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, DpmTable),
|
|
&table_start, 0x40000),
|
|
"[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
|
|
"communicate starting address of DPM table",
|
|
return -1;);
|
|
|
|
/* Default value for vr_config =
|
|
* VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
|
|
vr_config = 0x01000500; /* Real value:0x50001 */
|
|
|
|
vr_config_addr = table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, VRConfig);
|
|
|
|
PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
|
|
(uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
|
|
"[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
|
|
"vr_config value over to SMC",
|
|
return -1;);
|
|
|
|
level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
|
|
|
|
PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
|
|
(uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
|
|
"[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
|
|
return -1;);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
|
|
{
|
|
if (!hwmgr->avfs_supported)
|
|
return 0;
|
|
|
|
PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
|
|
"[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
|
|
" table over to SMU",
|
|
return -EINVAL);
|
|
PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
|
|
"[AVFS][fiji_avfs_event_mgr] Could not setup "
|
|
"Pwr Virus for AVFS ",
|
|
return -EINVAL);
|
|
PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
|
|
"[AVFS][fiji_avfs_event_mgr] Failure at "
|
|
"fiji_start_avfs_btc. AVFS Disabled",
|
|
return -EINVAL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_start_smu(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
/* Only start SMC if SMC RAM is not running */
|
|
if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
|
|
/* Check if SMU is running in protected mode */
|
|
if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
|
|
CGS_IND_REG__SMC,
|
|
SMU_FIRMWARE, SMU_MODE)) {
|
|
result = fiji_start_smu_in_non_protection_mode(hwmgr);
|
|
if (result)
|
|
return result;
|
|
} else {
|
|
result = fiji_start_smu_in_protection_mode(hwmgr);
|
|
if (result)
|
|
return result;
|
|
}
|
|
if (fiji_avfs_event_mgr(hwmgr))
|
|
hwmgr->avfs_supported = false;
|
|
}
|
|
|
|
/* Setup SoftRegsStart here for register lookup in case
|
|
* DummyBackEnd is used and ProcessFirmwareHeader is not executed
|
|
*/
|
|
smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, SoftRegisters),
|
|
&(priv->smu7_data.soft_regs_start), 0x40000);
|
|
|
|
result = smu7_request_smu_load_fw(hwmgr);
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
|
|
{
|
|
|
|
uint32_t efuse = 0;
|
|
|
|
if (!hwmgr->not_vf)
|
|
return false;
|
|
|
|
if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
|
|
&efuse)) {
|
|
if (efuse)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int fiji_smu_init(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *fiji_priv;
|
|
|
|
fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
|
|
|
|
if (fiji_priv == NULL)
|
|
return -ENOMEM;
|
|
|
|
hwmgr->smu_backend = fiji_priv;
|
|
|
|
if (smu7_init(hwmgr)) {
|
|
kfree(fiji_priv);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
|
|
uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
|
|
{
|
|
uint32_t i;
|
|
uint16_t vddci;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
*voltage = *mvdd = 0;
|
|
|
|
|
|
/* clock - voltage dependency table is empty table */
|
|
if (dep_table->count == 0)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
/* find first sclk bigger than request */
|
|
if (dep_table->entries[i].clk >= clock) {
|
|
*voltage |= (dep_table->entries[i].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
|
|
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else if (dep_table->entries[i].vddci)
|
|
*voltage |= (dep_table->entries[i].vddci *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else {
|
|
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
|
|
(dep_table->entries[i].vddc -
|
|
VDDC_VDDCI_DELTA));
|
|
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
}
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
|
|
*mvdd = data->vbios_boot_state.mvdd_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
else if (dep_table->entries[i].mvdd)
|
|
*mvdd = (uint32_t) dep_table->entries[i].mvdd *
|
|
VOLTAGE_SCALE;
|
|
|
|
*voltage |= 1 << PHASES_SHIFT;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* sclk is bigger than max sclk in the dependence table */
|
|
*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
|
|
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else if (dep_table->entries[i-1].vddci) {
|
|
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
|
|
(dep_table->entries[i].vddc -
|
|
VDDC_VDDCI_DELTA));
|
|
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
}
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
|
|
*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
|
|
else if (dep_table->entries[i].mvdd)
|
|
*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
|
|
{
|
|
uint32_t tmp;
|
|
tmp = raw_setting * 4096 / 100;
|
|
return (uint16_t)tmp;
|
|
}
|
|
|
|
static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
|
|
{
|
|
switch (line) {
|
|
case SMU7_I2CLineID_DDC1:
|
|
*scl = SMU7_I2C_DDC1CLK;
|
|
*sda = SMU7_I2C_DDC1DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC2:
|
|
*scl = SMU7_I2C_DDC2CLK;
|
|
*sda = SMU7_I2C_DDC2DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC3:
|
|
*scl = SMU7_I2C_DDC3CLK;
|
|
*sda = SMU7_I2C_DDC3DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC4:
|
|
*scl = SMU7_I2C_DDC4CLK;
|
|
*sda = SMU7_I2C_DDC4DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC5:
|
|
*scl = SMU7_I2C_DDC5CLK;
|
|
*sda = SMU7_I2C_DDC5DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC6:
|
|
*scl = SMU7_I2C_DDC6CLK;
|
|
*sda = SMU7_I2C_DDC6DATA;
|
|
break;
|
|
case SMU7_I2CLineID_SCLSDA:
|
|
*scl = SMU7_I2C_SCL;
|
|
*sda = SMU7_I2C_SDA;
|
|
break;
|
|
case SMU7_I2CLineID_DDCVGA:
|
|
*scl = SMU7_I2C_DDCVGACLK;
|
|
*sda = SMU7_I2C_DDCVGADATA;
|
|
break;
|
|
default:
|
|
*scl = 0;
|
|
*sda = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
if (table_info &&
|
|
table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
|
|
table_info->cac_dtp_table->usPowerTuneDataSetID)
|
|
smu_data->power_tune_defaults =
|
|
&fiji_power_tune_data_set_array
|
|
[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
|
|
else
|
|
smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
|
|
|
|
}
|
|
|
|
static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
|
|
|
|
SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
|
|
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
|
|
struct pp_advance_fan_control_parameters *fan_table =
|
|
&hwmgr->thermal_controller.advanceFanControlParameters;
|
|
uint8_t uc_scl, uc_sda;
|
|
|
|
/* TDP number of fraction bits are changed from 8 to 7 for Fiji
|
|
* as requested by SMC team
|
|
*/
|
|
dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
|
|
(uint16_t)(cac_dtp_table->usTDP * 128));
|
|
dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
|
|
(uint16_t)(cac_dtp_table->usTDP * 128));
|
|
|
|
PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
|
|
"Target Operating Temp is out of Range!",
|
|
);
|
|
|
|
dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
|
|
dpm_table->GpuTjHyst = 8;
|
|
|
|
dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
|
|
|
|
/* The following are for new Fiji Multi-input fan/thermal control */
|
|
dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTargetOperatingTemp * 256);
|
|
dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitHotspot * 256);
|
|
dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitLiquid1 * 256);
|
|
dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitLiquid2 * 256);
|
|
dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitVrVddc * 256);
|
|
dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitVrMvdd * 256);
|
|
dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitPlx * 256);
|
|
|
|
dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainEdge));
|
|
dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainHotspot));
|
|
dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainLiquid));
|
|
dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainVrVddc));
|
|
dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
|
|
dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainPlx));
|
|
dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainHbm));
|
|
|
|
dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
|
|
dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
|
|
dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
|
|
dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
|
|
|
|
get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
|
|
dpm_table->Liquid_I2C_LineSCL = uc_scl;
|
|
dpm_table->Liquid_I2C_LineSDA = uc_sda;
|
|
|
|
get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
|
|
dpm_table->Vr_I2C_LineSCL = uc_scl;
|
|
dpm_table->Vr_I2C_LineSDA = uc_sda;
|
|
|
|
get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
|
|
dpm_table->Plx_I2C_LineSCL = uc_scl;
|
|
dpm_table->Plx_I2C_LineSDA = uc_sda;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
|
|
|
|
smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
|
|
smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
|
|
smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
|
|
smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint16_t tdc_limit;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
|
|
|
|
/* TDC number of fraction bits are changed from 8 to 7
|
|
* for Fiji as requested by SMC team
|
|
*/
|
|
tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
|
|
smu_data->power_tune_table.TDC_VDDC_PkgLimit =
|
|
CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
|
|
smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
|
|
defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
|
|
smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
|
|
uint32_t temp;
|
|
|
|
if (smu7_read_smc_sram_dword(hwmgr,
|
|
fuse_table_offset +
|
|
offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
|
|
(uint32_t *)&temp, SMC_RAM_END))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
|
|
return -EINVAL);
|
|
else {
|
|
smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
|
|
smu_data->power_tune_table.LPMLTemperatureMin =
|
|
(uint8_t)((temp >> 16) & 0xff);
|
|
smu_data->power_tune_table.LPMLTemperatureMax =
|
|
(uint8_t)((temp >> 8) & 0xff);
|
|
smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int i;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
/* Currently not used. Set all to zero. */
|
|
for (i = 0; i < 16; i++)
|
|
smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
if ((hwmgr->thermal_controller.advanceFanControlParameters.
|
|
usFanOutputSensitivity & (1 << 15)) ||
|
|
0 == hwmgr->thermal_controller.advanceFanControlParameters.
|
|
usFanOutputSensitivity)
|
|
hwmgr->thermal_controller.advanceFanControlParameters.
|
|
usFanOutputSensitivity = hwmgr->thermal_controller.
|
|
advanceFanControlParameters.usDefaultFanOutputSensitivity;
|
|
|
|
smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
|
|
PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
|
|
advanceFanControlParameters.usFanOutputSensitivity);
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int i;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
/* Currently not used. Set all to zero. */
|
|
for (i = 0; i < 16; i++)
|
|
smu_data->power_tune_table.GnbLPML[i] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
|
|
uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
|
|
struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
|
|
|
|
HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
|
|
LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
|
|
|
|
smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
|
|
CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
|
|
smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
|
|
CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t pm_fuse_table_offset;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_PowerContainment)) {
|
|
if (smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, PmFuseTable),
|
|
&pm_fuse_table_offset, SMC_RAM_END))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to get pm_fuse_table_offset Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW6 */
|
|
if (fiji_populate_svi_load_line(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate SviLoadLine Failed!",
|
|
return -EINVAL);
|
|
/* DW7 */
|
|
if (fiji_populate_tdc_limit(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate TDCLimit Failed!", return -EINVAL);
|
|
/* DW8 */
|
|
if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate TdcWaterfallCtl, "
|
|
"LPMLTemperature Min and Max Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW9-DW12 */
|
|
if (0 != fiji_populate_temperature_scaler(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate LPMLTemperatureScaler Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW13-DW14 */
|
|
if (fiji_populate_fuzzy_fan(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate Fuzzy Fan Control parameters Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW15-DW18 */
|
|
if (fiji_populate_gnb_lpml(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate GnbLPML Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW20 */
|
|
if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
|
|
"Sidd Failed!", return -EINVAL);
|
|
|
|
if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
|
|
(uint8_t *)&smu_data->power_tune_table,
|
|
sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to download PmFuseTable Failed!",
|
|
return -EINVAL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
uint32_t count;
|
|
uint8_t index;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_voltage_lookup_table *lookup_table =
|
|
table_info->vddc_lookup_table;
|
|
/* tables is already swapped, so in order to use the value from it,
|
|
* we need to swap it back.
|
|
* We are populating vddc CAC data to BapmVddc table
|
|
* in split and merged mode
|
|
*/
|
|
|
|
for (count = 0; count < lookup_table->count; count++) {
|
|
index = phm_get_voltage_index(lookup_table,
|
|
data->vddc_voltage_table.entries[count].value);
|
|
table->BapmVddcVidLoSidd[count] =
|
|
convert_to_vid(lookup_table->entries[index].us_cac_low);
|
|
table->BapmVddcVidHiSidd[count] =
|
|
convert_to_vid(lookup_table->entries[index].us_cac_high);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result;
|
|
|
|
result = fiji_populate_cac_table(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"can not populate CAC voltage tables to SMC",
|
|
return -EINVAL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_Ulv *state)
|
|
{
|
|
int result = 0;
|
|
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
state->CcPwrDynRm = 0;
|
|
state->CcPwrDynRm1 = 0;
|
|
|
|
state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
|
|
state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
|
|
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
|
|
|
|
state->VddcPhase = 1;
|
|
|
|
if (!result) {
|
|
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
|
|
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
return fiji_populate_ulv_level(hwmgr, &table->Ulv);
|
|
}
|
|
|
|
static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct smu7_dpm_table *dpm_table = &data->dpm_table;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
int i;
|
|
|
|
/* Index (dpm_table->pcie_speed_table.count)
|
|
* is reserved for PCIE boot level. */
|
|
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
|
|
table->LinkLevel[i].PcieGenSpeed =
|
|
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
|
|
table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
|
|
dpm_table->pcie_speed_table.dpm_levels[i].param1);
|
|
table->LinkLevel[i].EnabledForActivity = 1;
|
|
table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
|
|
table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
|
|
table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
|
|
}
|
|
|
|
smu_data->smc_state_table.LinkLevelCount =
|
|
(uint8_t)dpm_table->pcie_speed_table.count;
|
|
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
|
|
phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
|
|
{
|
|
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
|
|
uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
|
|
uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
|
|
uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
|
|
uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
|
|
uint32_t ref_clock;
|
|
uint32_t ref_divider;
|
|
uint32_t fbdiv;
|
|
int result;
|
|
|
|
/* get the engine clock dividers for this clock value */
|
|
result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs);
|
|
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error retrieving Engine Clock dividers from VBIOS.",
|
|
return result);
|
|
|
|
/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
|
|
ref_clock = atomctrl_get_reference_clock(hwmgr);
|
|
ref_divider = 1 + dividers.uc_pll_ref_div;
|
|
|
|
/* low 14 bits is fraction and high 12 bits is divider */
|
|
fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
|
|
|
|
/* SPLL_FUNC_CNTL setup */
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_REF_DIV, dividers.uc_pll_ref_div);
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_PDIV_A, dividers.uc_pll_post_div);
|
|
|
|
/* SPLL_FUNC_CNTL_3 setup*/
|
|
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
|
|
SPLL_FB_DIV, fbdiv);
|
|
|
|
/* set to use fractional accumulation*/
|
|
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
|
|
SPLL_DITHEN, 1);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
|
|
struct pp_atomctrl_internal_ss_info ssInfo;
|
|
|
|
uint32_t vco_freq = clock * dividers.uc_pll_post_div;
|
|
if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
|
|
vco_freq, &ssInfo)) {
|
|
/*
|
|
* ss_info.speed_spectrum_percentage -- in unit of 0.01%
|
|
* ss_info.speed_spectrum_rate -- in unit of khz
|
|
*
|
|
* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
|
|
*/
|
|
uint32_t clk_s = ref_clock * 5 /
|
|
(ref_divider * ssInfo.speed_spectrum_rate);
|
|
/* clkv = 2 * D * fbdiv / NS */
|
|
uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
|
|
fbdiv / (clk_s * 10000);
|
|
|
|
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
|
|
CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
|
|
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
|
|
CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
|
|
cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
|
|
CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
|
|
}
|
|
}
|
|
|
|
sclk->SclkFrequency = clock;
|
|
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
|
|
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
|
|
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
|
|
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
|
|
sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
|
|
{
|
|
int result;
|
|
/* PP_Clocks minClocks; */
|
|
uint32_t mvdd;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
|
|
|
|
result = fiji_calculate_sclk_params(hwmgr, clock, level);
|
|
|
|
if (hwmgr->od_enabled)
|
|
vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
|
|
else
|
|
vdd_dep_table = table_info->vdd_dep_on_sclk;
|
|
|
|
/* populate graphics levels */
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
vdd_dep_table, clock,
|
|
(uint32_t *)(&level->MinVoltage), &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find VDDC voltage value for "
|
|
"VDDC engine clock dependency table",
|
|
return result);
|
|
|
|
level->SclkFrequency = clock;
|
|
level->ActivityLevel = data->current_profile_setting.sclk_activity;
|
|
level->CcPwrDynRm = 0;
|
|
level->CcPwrDynRm1 = 0;
|
|
level->EnabledForActivity = 0;
|
|
level->EnabledForThrottle = 1;
|
|
level->UpHyst = data->current_profile_setting.sclk_up_hyst;
|
|
level->DownHyst = data->current_profile_setting.sclk_down_hyst;
|
|
level->VoltageDownHyst = 0;
|
|
level->PowerThrottle = 0;
|
|
|
|
data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
|
|
level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
|
|
hwmgr->display_config->min_core_set_clock_in_sr);
|
|
|
|
|
|
/* Default to slow, highest DPM level will be
|
|
* set to PPSMC_DISPLAY_WATERMARK_LOW later.
|
|
*/
|
|
level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
struct smu7_dpm_table *dpm_table = &data->dpm_table;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
|
|
uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
|
|
int result = 0;
|
|
uint32_t array = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
|
|
uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
|
|
SMU73_MAX_LEVELS_GRAPHICS;
|
|
struct SMU73_Discrete_GraphicsLevel *levels =
|
|
smu_data->smc_state_table.GraphicsLevel;
|
|
uint32_t i, max_entry;
|
|
uint8_t hightest_pcie_level_enabled = 0,
|
|
lowest_pcie_level_enabled = 0,
|
|
mid_pcie_level_enabled = 0,
|
|
count = 0;
|
|
|
|
for (i = 0; i < dpm_table->sclk_table.count; i++) {
|
|
result = fiji_populate_single_graphic_level(hwmgr,
|
|
dpm_table->sclk_table.dpm_levels[i].value,
|
|
&levels[i]);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
|
|
if (i > 1)
|
|
levels[i].DeepSleepDivId = 0;
|
|
}
|
|
|
|
/* Only enable level 0 for now.*/
|
|
levels[0].EnabledForActivity = 1;
|
|
|
|
/* set highest level watermark to high */
|
|
levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
|
|
PPSMC_DISPLAY_WATERMARK_HIGH;
|
|
|
|
smu_data->smc_state_table.GraphicsDpmLevelCount =
|
|
(uint8_t)dpm_table->sclk_table.count;
|
|
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
|
|
phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
|
|
|
|
if (pcie_table != NULL) {
|
|
PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
|
|
"There must be 1 or more PCIE levels defined in PPTable.",
|
|
return -EINVAL);
|
|
max_entry = pcie_entry_cnt - 1;
|
|
for (i = 0; i < dpm_table->sclk_table.count; i++)
|
|
levels[i].pcieDpmLevel =
|
|
(uint8_t) ((i < max_entry) ? i : max_entry);
|
|
} else {
|
|
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << (hightest_pcie_level_enabled + 1))) != 0))
|
|
hightest_pcie_level_enabled++;
|
|
|
|
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << lowest_pcie_level_enabled)) == 0))
|
|
lowest_pcie_level_enabled++;
|
|
|
|
while ((count < hightest_pcie_level_enabled) &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
|
|
count++;
|
|
|
|
mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
|
|
hightest_pcie_level_enabled ?
|
|
(lowest_pcie_level_enabled + 1 + count) :
|
|
hightest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to hightest_pcie_level_enabled */
|
|
for (i = 2; i < dpm_table->sclk_table.count; i++)
|
|
levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to lowest_pcie_level_enabled */
|
|
levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to mid_pcie_level_enabled */
|
|
levels[1].pcieDpmLevel = mid_pcie_level_enabled;
|
|
}
|
|
/* level count will send to smc once at init smc table and never change */
|
|
result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
|
|
(uint32_t)array_size, SMC_RAM_END);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* MCLK Frequency Ratio
|
|
* SEQ_CG_RESP Bit[31:24] - 0x0
|
|
* Bit[27:24] \96 DDR3 Frequency ratio
|
|
* 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
|
|
* 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
|
|
* 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
|
|
* 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
|
|
* 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
|
|
* 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
|
|
* 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
|
|
* 400 < 0x7 <= 450MHz, 800 < 0xF
|
|
*/
|
|
static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
|
|
{
|
|
if (mem_clock <= 10000)
|
|
return 0x0;
|
|
if (mem_clock <= 15000)
|
|
return 0x1;
|
|
if (mem_clock <= 20000)
|
|
return 0x2;
|
|
if (mem_clock <= 25000)
|
|
return 0x3;
|
|
if (mem_clock <= 30000)
|
|
return 0x4;
|
|
if (mem_clock <= 35000)
|
|
return 0x5;
|
|
if (mem_clock <= 40000)
|
|
return 0x6;
|
|
if (mem_clock <= 45000)
|
|
return 0x7;
|
|
if (mem_clock <= 50000)
|
|
return 0x8;
|
|
if (mem_clock <= 55000)
|
|
return 0x9;
|
|
if (mem_clock <= 60000)
|
|
return 0xa;
|
|
if (mem_clock <= 65000)
|
|
return 0xb;
|
|
if (mem_clock <= 70000)
|
|
return 0xc;
|
|
if (mem_clock <= 75000)
|
|
return 0xd;
|
|
if (mem_clock <= 80000)
|
|
return 0xe;
|
|
/* mem_clock > 800MHz */
|
|
return 0xf;
|
|
}
|
|
|
|
static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
|
|
{
|
|
struct pp_atomctrl_memory_clock_param mem_param;
|
|
int result;
|
|
|
|
result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to get Memory PLL Dividers.",
|
|
);
|
|
|
|
/* Save the result data to outpupt memory level structure */
|
|
mclk->MclkFrequency = clock;
|
|
mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
|
|
mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
int result = 0;
|
|
uint32_t mclk_stutter_mode_threshold = 60000;
|
|
phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
|
|
|
|
if (hwmgr->od_enabled)
|
|
vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
|
|
else
|
|
vdd_dep_table = table_info->vdd_dep_on_mclk;
|
|
|
|
if (vdd_dep_table) {
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
vdd_dep_table, clock,
|
|
(uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find MinVddc voltage value from memory "
|
|
"VDDC voltage dependency table", return result);
|
|
}
|
|
|
|
mem_level->EnabledForThrottle = 1;
|
|
mem_level->EnabledForActivity = 0;
|
|
mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
|
|
mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
|
|
mem_level->VoltageDownHyst = 0;
|
|
mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
|
|
mem_level->StutterEnable = false;
|
|
|
|
mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
|
|
/* enable stutter mode if all the follow condition applied
|
|
* PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
|
|
* &(data->DisplayTiming.numExistingDisplays));
|
|
*/
|
|
data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
|
|
data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
|
|
|
|
if (mclk_stutter_mode_threshold &&
|
|
(clock <= mclk_stutter_mode_threshold) &&
|
|
(!data->is_uvd_enabled) &&
|
|
(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
|
|
STUTTER_ENABLE) & 0x1))
|
|
mem_level->StutterEnable = true;
|
|
|
|
result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
|
|
if (!result) {
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct smu7_dpm_table *dpm_table = &data->dpm_table;
|
|
int result;
|
|
/* populate MCLK dpm table to SMU7 */
|
|
uint32_t array = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
|
|
uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
|
|
SMU73_MAX_LEVELS_MEMORY;
|
|
struct SMU73_Discrete_MemoryLevel *levels =
|
|
smu_data->smc_state_table.MemoryLevel;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < dpm_table->mclk_table.count; i++) {
|
|
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
|
|
"can not populate memory level as memory clock is zero",
|
|
return -EINVAL);
|
|
result = fiji_populate_single_memory_level(hwmgr,
|
|
dpm_table->mclk_table.dpm_levels[i].value,
|
|
&levels[i]);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/* Only enable level 0 for now. */
|
|
levels[0].EnabledForActivity = 1;
|
|
|
|
/* in order to prevent MC activity from stutter mode to push DPM up.
|
|
* the UVD change complements this by putting the MCLK in
|
|
* a higher state by default such that we are not effected by
|
|
* up threshold or and MCLK DPM latency.
|
|
*/
|
|
levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
|
|
CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
|
|
|
|
smu_data->smc_state_table.MemoryDpmLevelCount =
|
|
(uint8_t)dpm_table->mclk_table.count;
|
|
data->dpm_level_enable_mask.mclk_dpm_enable_mask =
|
|
phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
|
|
/* set highest level watermark to high */
|
|
levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
|
|
PPSMC_DISPLAY_WATERMARK_HIGH;
|
|
|
|
/* level count will send to smc once at init smc table and never change */
|
|
result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
|
|
(uint32_t)array_size, SMC_RAM_END);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
|
|
uint32_t mclk, SMIO_Pattern *smio_pat)
|
|
{
|
|
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint32_t i = 0;
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
|
|
/* find mvdd value which clock is more than request */
|
|
for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
|
|
if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
|
|
smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
|
|
break;
|
|
}
|
|
}
|
|
PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
|
|
"MVDD Voltage is outside the supported range.",
|
|
return -EINVAL);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = 0;
|
|
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
SMIO_Pattern vol_level;
|
|
uint32_t mvdd;
|
|
uint16_t us_mvdd;
|
|
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
|
|
uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
|
|
|
|
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
|
|
|
|
if (!data->sclk_dpm_key_disabled) {
|
|
/* Get MinVoltage and Frequency from DPM0,
|
|
* already converted to SMC_UL */
|
|
table->ACPILevel.SclkFrequency =
|
|
data->dpm_table.sclk_table.dpm_levels[0].value;
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_sclk,
|
|
table->ACPILevel.SclkFrequency,
|
|
(uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Cannot find ACPI VDDC voltage value " \
|
|
"in Clock Dependency Table",
|
|
);
|
|
} else {
|
|
table->ACPILevel.SclkFrequency =
|
|
data->vbios_boot_state.sclk_bootup_value;
|
|
table->ACPILevel.MinVoltage =
|
|
data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
|
|
}
|
|
|
|
/* get the engine clock dividers for this clock value */
|
|
result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
|
|
table->ACPILevel.SclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error retrieving Engine Clock dividers from VBIOS.",
|
|
return result);
|
|
|
|
table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
|
|
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
table->ACPILevel.DeepSleepDivId = 0;
|
|
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_PWRON, 0);
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_RESET, 1);
|
|
spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
|
|
SCLK_MUX_SEL, 4);
|
|
|
|
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
|
|
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
|
|
table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
|
|
table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
|
|
table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
|
|
table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
|
|
table->ACPILevel.CcPwrDynRm = 0;
|
|
table->ACPILevel.CcPwrDynRm1 = 0;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
|
|
|
|
if (!data->mclk_dpm_key_disabled) {
|
|
/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
|
|
table->MemoryACPILevel.MclkFrequency =
|
|
data->dpm_table.mclk_table.dpm_levels[0].value;
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_mclk,
|
|
table->MemoryACPILevel.MclkFrequency,
|
|
(uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
|
|
);
|
|
} else {
|
|
table->MemoryACPILevel.MclkFrequency =
|
|
data->vbios_boot_state.mclk_bootup_value;
|
|
table->MemoryACPILevel.MinVoltage =
|
|
data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
|
|
}
|
|
|
|
us_mvdd = 0;
|
|
if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
|
|
(data->mclk_dpm_key_disabled))
|
|
us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
|
|
else {
|
|
if (!fiji_populate_mvdd_value(hwmgr,
|
|
data->dpm_table.mclk_table.dpm_levels[0].value,
|
|
&vol_level))
|
|
us_mvdd = vol_level.Voltage;
|
|
}
|
|
|
|
table->MemoryACPILevel.MinMvdd =
|
|
PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
|
|
|
|
table->MemoryACPILevel.EnabledForThrottle = 0;
|
|
table->MemoryACPILevel.EnabledForActivity = 0;
|
|
table->MemoryACPILevel.UpHyst = 0;
|
|
table->MemoryACPILevel.DownHyst = 100;
|
|
table->MemoryACPILevel.VoltageDownHyst = 0;
|
|
table->MemoryACPILevel.ActivityLevel =
|
|
PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
|
|
|
|
table->MemoryACPILevel.StutterEnable = false;
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
|
|
table->VceLevelCount = (uint8_t)(mm_table->count);
|
|
table->VceBootLevel = 0;
|
|
|
|
for (count = 0; count < table->VceLevelCount; count++) {
|
|
table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
|
|
table->VceLevel[count].MinVoltage = 0;
|
|
table->VceLevel[count].MinVoltage |=
|
|
(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->VceLevel[count].MinVoltage |=
|
|
((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/*retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->VceLevel[count].Frequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for VCE engine clock",
|
|
return result);
|
|
|
|
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
|
|
table->AcpLevelCount = (uint8_t)(mm_table->count);
|
|
table->AcpBootLevel = 0;
|
|
|
|
for (count = 0; count < table->AcpLevelCount; count++) {
|
|
table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
|
|
table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
|
|
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/* retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->AcpLevel[count].Frequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for engine clock", return result);
|
|
|
|
table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
|
|
int32_t eng_clock, int32_t mem_clock,
|
|
struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
|
|
{
|
|
uint32_t dram_timing;
|
|
uint32_t dram_timing2;
|
|
uint32_t burstTime;
|
|
ULONG trrds, trrdl;
|
|
int result;
|
|
|
|
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
|
|
eng_clock, mem_clock);
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error calling VBIOS to set DRAM_TIMING.", return result);
|
|
|
|
dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
|
|
dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
|
|
burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
|
|
|
|
trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
|
|
trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
|
|
|
|
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
|
|
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
|
|
arb_regs->McArbBurstTime = (uint8_t)burstTime;
|
|
arb_regs->TRRDS = (uint8_t)trrds;
|
|
arb_regs->TRRDL = (uint8_t)trrdl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
|
|
uint32_t i, j;
|
|
int result = 0;
|
|
|
|
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
|
|
for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
|
|
result = fiji_populate_memory_timing_parameters(hwmgr,
|
|
data->dpm_table.sclk_table.dpm_levels[i].value,
|
|
data->dpm_table.mclk_table.dpm_levels[j].value,
|
|
&arb_regs.entries[i][j]);
|
|
if (result)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!result)
|
|
result = smu7_copy_bytes_to_smc(
|
|
hwmgr,
|
|
smu_data->smu7_data.arb_table_start,
|
|
(uint8_t *)&arb_regs,
|
|
sizeof(SMU73_Discrete_MCArbDramTimingTable),
|
|
SMC_RAM_END);
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
|
|
table->UvdLevelCount = (uint8_t)(mm_table->count);
|
|
table->UvdBootLevel = 0;
|
|
|
|
for (count = 0; count < table->UvdLevelCount; count++) {
|
|
table->UvdLevel[count].MinVoltage = 0;
|
|
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
|
|
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
|
|
table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
|
|
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/* retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->UvdLevel[count].VclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for Vclk clock", return result);
|
|
|
|
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->UvdLevel[count].DclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for Dclk clock", return result);
|
|
|
|
table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
|
|
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
|
|
table->GraphicsBootLevel = 0;
|
|
table->MemoryBootLevel = 0;
|
|
|
|
/* find boot level from dpm table */
|
|
phm_find_boot_level(&(data->dpm_table.sclk_table),
|
|
data->vbios_boot_state.sclk_bootup_value,
|
|
(uint32_t *)&(table->GraphicsBootLevel));
|
|
|
|
phm_find_boot_level(&(data->dpm_table.mclk_table),
|
|
data->vbios_boot_state.mclk_bootup_value,
|
|
(uint32_t *)&(table->MemoryBootLevel));
|
|
|
|
table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint8_t count, level;
|
|
|
|
count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
|
|
for (level = 0; level < count; level++) {
|
|
if (table_info->vdd_dep_on_sclk->entries[level].clk >=
|
|
data->vbios_boot_state.sclk_bootup_value) {
|
|
smu_data->smc_state_table.GraphicsBootLevel = level;
|
|
break;
|
|
}
|
|
}
|
|
|
|
count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
|
|
for (level = 0; level < count; level++) {
|
|
if (table_info->vdd_dep_on_mclk->entries[level].clk >=
|
|
data->vbios_boot_state.mclk_bootup_value) {
|
|
smu_data->smc_state_table.MemoryBootLevel = level;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
|
|
volt_with_cks, value;
|
|
uint16_t clock_freq_u16;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
|
|
volt_offset = 0;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
|
|
table_info->vdd_dep_on_sclk;
|
|
|
|
stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
|
|
|
|
/* Read SMU_Eefuse to read and calculate RO and determine
|
|
* if the part is SS or FF. if RO >= 1660MHz, part is FF.
|
|
*/
|
|
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_EFUSE_0 + (146 * 4));
|
|
efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_EFUSE_0 + (148 * 4));
|
|
efuse &= 0xFF000000;
|
|
efuse = efuse >> 24;
|
|
efuse2 &= 0xF;
|
|
|
|
if (efuse2 == 1)
|
|
ro = (2300 - 1350) * efuse / 255 + 1350;
|
|
else
|
|
ro = (2500 - 1000) * efuse / 255 + 1000;
|
|
|
|
if (ro >= 1660)
|
|
type = 0;
|
|
else
|
|
type = 1;
|
|
|
|
/* Populate Stretch amount */
|
|
smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
|
|
|
|
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
|
|
for (i = 0; i < sclk_table->count; i++) {
|
|
smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
|
|
sclk_table->entries[i].cks_enable << i;
|
|
volt_without_cks = (uint32_t)((14041 *
|
|
(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
|
|
(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
|
|
volt_with_cks = (uint32_t)((13946 *
|
|
(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
|
|
(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
|
|
if (volt_without_cks >= volt_with_cks)
|
|
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
|
|
sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
|
|
smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
|
|
}
|
|
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
STRETCH_ENABLE, 0x0);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
masterReset, 0x1);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
staticEnable, 0x1);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
masterReset, 0x0);
|
|
|
|
/* Populate CKS Lookup Table */
|
|
if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
|
|
stretch_amount2 = 0;
|
|
else if (stretch_amount == 3 || stretch_amount == 4)
|
|
stretch_amount2 = 1;
|
|
else {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ClockStretcher);
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Stretch Amount in PPTable not supported",
|
|
return -EINVAL);
|
|
}
|
|
|
|
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixPWR_CKS_CNTL);
|
|
value &= 0xFFC2FF87;
|
|
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][0];
|
|
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][1];
|
|
clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
|
|
GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
|
|
SclkFrequency) / 100);
|
|
if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
|
|
clock_freq_u16 &&
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
|
|
clock_freq_u16) {
|
|
/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
|
|
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
|
|
/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
|
|
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
|
|
/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
|
|
value |= (fiji_clock_stretch_amount_conversion
|
|
[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
|
|
[stretch_amount]) << 3;
|
|
}
|
|
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
|
|
CKS_LOOKUPTableEntry[0].minFreq);
|
|
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
|
|
CKS_LOOKUPTableEntry[0].maxFreq);
|
|
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
|
|
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
|
|
(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
|
|
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixPWR_CKS_CNTL, value);
|
|
|
|
/* Populate DDT Lookup Table */
|
|
for (i = 0; i < 4; i++) {
|
|
/* Assign the minimum and maximum VID stored
|
|
* in the last row of Clock Stretcher Voltage Table.
|
|
*/
|
|
smu_data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].minVID =
|
|
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
|
|
smu_data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].maxVID =
|
|
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
|
|
/* Loop through each SCLK and check the frequency
|
|
* to see if it lies within the frequency for clock stretcher.
|
|
*/
|
|
for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
|
|
cks_setting = 0;
|
|
clock_freq = PP_SMC_TO_HOST_UL(
|
|
smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
|
|
/* Check the allowed frequency against the sclk level[j].
|
|
* Sclk's endianness has already been converted,
|
|
* and it's in 10Khz unit,
|
|
* as opposed to Data table, which is in Mhz unit.
|
|
*/
|
|
if (clock_freq >=
|
|
(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
|
|
cks_setting |= 0x2;
|
|
if (clock_freq <
|
|
(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
|
|
cks_setting |= 0x1;
|
|
}
|
|
smu_data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
|
|
}
|
|
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
|
|
ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].setting);
|
|
}
|
|
|
|
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
|
|
value &= 0xFFFFFFFE;
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
uint16_t config;
|
|
|
|
config = VR_MERGED_WITH_VDDC;
|
|
table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
|
|
|
|
/* Set Vddc Voltage Controller */
|
|
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
|
|
config = VR_SVI2_PLANE_1;
|
|
table->VRConfig |= config;
|
|
} else {
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"VDDC should be on SVI2 control in merged mode!",
|
|
);
|
|
}
|
|
/* Set Vddci Voltage Controller */
|
|
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
|
|
config = VR_SVI2_PLANE_2; /* only in merged mode */
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
|
|
config = VR_SMIO_PATTERN_1;
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
} else {
|
|
config = VR_STATIC_VOLTAGE;
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
}
|
|
/* Set Mvdd Voltage Controller */
|
|
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
|
|
config = VR_SVI2_PLANE_2;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
|
|
config = VR_SMIO_PATTERN_2;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
} else {
|
|
config = VR_STATIC_VOLTAGE;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t tmp;
|
|
int result;
|
|
|
|
/* This is a read-modify-write on the first byte of the ARB table.
|
|
* The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
|
|
* is the field 'current'.
|
|
* This solution is ugly, but we never write the whole table only
|
|
* individual fields in it.
|
|
* In reality this field should not be in that structure
|
|
* but in a soft register.
|
|
*/
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
|
|
|
|
if (result)
|
|
return result;
|
|
|
|
tmp &= 0x00FFFFFF;
|
|
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
|
|
|
|
return smu7_write_smc_sram_dword(hwmgr,
|
|
smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
|
|
}
|
|
|
|
static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
|
|
{
|
|
pp_atomctrl_voltage_table param_led_dpm;
|
|
int result = 0;
|
|
u32 mask = 0;
|
|
|
|
result = atomctrl_get_voltage_table_v3(hwmgr,
|
|
VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
|
|
¶m_led_dpm);
|
|
if (result == 0) {
|
|
int i, j;
|
|
u32 tmp = param_led_dpm.mask_low;
|
|
|
|
for (i = 0, j = 0; i < 32; i++) {
|
|
if (tmp & 1) {
|
|
mask |= (i << (8 * j));
|
|
if (++j >= 3)
|
|
break;
|
|
}
|
|
tmp >>= 1;
|
|
}
|
|
}
|
|
if (mask)
|
|
smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_LedConfig,
|
|
mask,
|
|
NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
|
|
uint8_t i;
|
|
struct pp_atomctrl_gpio_pin_assignment gpio_pin;
|
|
|
|
fiji_initialize_power_tune_defaults(hwmgr);
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
|
|
fiji_populate_smc_voltage_tables(hwmgr, table);
|
|
|
|
table->SystemFlags = 0;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition))
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StepVddc))
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
|
|
|
|
if (data->is_memory_gddr5)
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
|
|
|
|
if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
|
|
result = fiji_populate_ulv_state(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ULV state!", return result);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_ULV_PARAMETER, 0x40035);
|
|
}
|
|
|
|
result = fiji_populate_smc_link_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Link Level!", return result);
|
|
|
|
result = fiji_populate_all_graphic_levels(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Graphics Level!", return result);
|
|
|
|
result = fiji_populate_all_memory_levels(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Memory Level!", return result);
|
|
|
|
result = fiji_populate_smc_acpi_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ACPI Level!", return result);
|
|
|
|
result = fiji_populate_smc_vce_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize VCE Level!", return result);
|
|
|
|
result = fiji_populate_smc_acp_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ACP Level!", return result);
|
|
|
|
/* Since only the initial state is completely set up at this point
|
|
* (the other states are just copies of the boot state) we only
|
|
* need to populate the ARB settings for the initial state.
|
|
*/
|
|
result = fiji_program_memory_timing_parameters(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to Write ARB settings for the initial state.", return result);
|
|
|
|
result = fiji_populate_smc_uvd_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize UVD Level!", return result);
|
|
|
|
result = fiji_populate_smc_boot_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Boot Level!", return result);
|
|
|
|
result = fiji_populate_smc_initailial_state(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Boot State!", return result);
|
|
|
|
result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate BAPM Parameters!", return result);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ClockStretcher)) {
|
|
result = fiji_populate_clock_stretcher_data_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate Clock Stretcher Data Table!",
|
|
return result);
|
|
}
|
|
|
|
table->GraphicsVoltageChangeEnable = 1;
|
|
table->GraphicsThermThrottleEnable = 1;
|
|
table->GraphicsInterval = 1;
|
|
table->VoltageInterval = 1;
|
|
table->ThermalInterval = 1;
|
|
table->TemperatureLimitHigh =
|
|
table_info->cac_dtp_table->usTargetOperatingTemp *
|
|
SMU7_Q88_FORMAT_CONVERSION_UNIT;
|
|
table->TemperatureLimitLow =
|
|
(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
|
|
SMU7_Q88_FORMAT_CONVERSION_UNIT;
|
|
table->MemoryVoltageChangeEnable = 1;
|
|
table->MemoryInterval = 1;
|
|
table->VoltageResponseTime = 0;
|
|
table->PhaseResponseTime = 0;
|
|
table->MemoryThermThrottleEnable = 1;
|
|
table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
|
|
table->PCIeGenInterval = 1;
|
|
table->VRConfig = 0;
|
|
|
|
result = fiji_populate_vr_config(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate VRConfig setting!", return result);
|
|
data->vr_config = table->VRConfig;
|
|
table->ThermGpio = 17;
|
|
table->SclkStepSize = 0x4000;
|
|
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
|
|
table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot);
|
|
} else {
|
|
table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot);
|
|
}
|
|
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
|
|
&gpio_pin)) {
|
|
table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition);
|
|
} else {
|
|
table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition);
|
|
}
|
|
|
|
/* Thermal Output GPIO */
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
|
|
&gpio_pin)) {
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ThermalOutGPIO);
|
|
|
|
table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
|
|
/* For porlarity read GPIOPAD_A with assigned Gpio pin
|
|
* since VBIOS will program this register to set 'inactive state',
|
|
* driver can then determine 'active state' from this and
|
|
* program SMU with correct polarity
|
|
*/
|
|
table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
|
|
(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
|
|
|
|
/* if required, combine VRHot/PCC with thermal out GPIO */
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot) &&
|
|
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_CombinePCCWithThermalSignal))
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
|
|
} else {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ThermalOutGPIO);
|
|
table->ThermOutGpio = 17;
|
|
table->ThermOutPolarity = 1;
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
|
|
}
|
|
|
|
for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
|
|
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
|
|
|
|
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
|
|
result = smu7_copy_bytes_to_smc(hwmgr,
|
|
smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, SystemFlags),
|
|
(uint8_t *)&(table->SystemFlags),
|
|
sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
|
|
SMC_RAM_END);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to upload dpm data to SMC memory!", return result);
|
|
|
|
result = fiji_init_arb_table_index(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to upload arb data to SMC memory!", return result);
|
|
|
|
result = fiji_populate_pm_fuses(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate PM fuses to SMC memory!", return result);
|
|
|
|
result = fiji_setup_dpm_led_config(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to setup dpm led config", return result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
|
|
uint32_t duty100;
|
|
uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
|
|
uint16_t fdo_min, slope1, slope2;
|
|
uint32_t reference_clock;
|
|
int res;
|
|
uint64_t tmp64;
|
|
|
|
if (hwmgr->thermal_controller.fanInfo.bNoFan) {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
return 0;
|
|
}
|
|
|
|
if (smu_data->smu7_data.fan_table_start == 0) {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
return 0;
|
|
}
|
|
|
|
duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
CG_FDO_CTRL1, FMAX_DUTY100);
|
|
|
|
if (duty100 == 0) {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
return 0;
|
|
}
|
|
|
|
tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
|
|
usPWMMin * duty100;
|
|
do_div(tmp64, 10000);
|
|
fdo_min = (uint16_t)tmp64;
|
|
|
|
t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
|
|
t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
|
|
|
|
pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
|
|
pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
|
|
|
|
slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
|
|
slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
|
|
|
|
fan_table.TempMin = cpu_to_be16((50 + hwmgr->
|
|
thermal_controller.advanceFanControlParameters.usTMin) / 100);
|
|
fan_table.TempMed = cpu_to_be16((50 + hwmgr->
|
|
thermal_controller.advanceFanControlParameters.usTMed) / 100);
|
|
fan_table.TempMax = cpu_to_be16((50 + hwmgr->
|
|
thermal_controller.advanceFanControlParameters.usTMax) / 100);
|
|
|
|
fan_table.Slope1 = cpu_to_be16(slope1);
|
|
fan_table.Slope2 = cpu_to_be16(slope2);
|
|
|
|
fan_table.FdoMin = cpu_to_be16(fdo_min);
|
|
|
|
fan_table.HystDown = cpu_to_be16(hwmgr->
|
|
thermal_controller.advanceFanControlParameters.ucTHyst);
|
|
|
|
fan_table.HystUp = cpu_to_be16(1);
|
|
|
|
fan_table.HystSlope = cpu_to_be16(1);
|
|
|
|
fan_table.TempRespLim = cpu_to_be16(5);
|
|
|
|
reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
|
|
|
|
fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
|
|
thermal_controller.advanceFanControlParameters.ulCycleDelay *
|
|
reference_clock) / 1600);
|
|
|
|
fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
|
|
|
|
fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
|
|
hwmgr->device, CGS_IND_REG__SMC,
|
|
CG_MULT_THERMAL_CTRL, TEMP_SEL);
|
|
|
|
res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
|
|
(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
|
|
SMC_RAM_END);
|
|
|
|
if (!res && hwmgr->thermal_controller.
|
|
advanceFanControlParameters.ucMinimumPWMLimit)
|
|
res = smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_SetFanMinPwm,
|
|
hwmgr->thermal_controller.
|
|
advanceFanControlParameters.ucMinimumPWMLimit,
|
|
NULL);
|
|
|
|
if (!res && hwmgr->thermal_controller.
|
|
advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
|
|
res = smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_SetFanSclkTarget,
|
|
hwmgr->thermal_controller.
|
|
advanceFanControlParameters.ulMinFanSCLKAcousticLimit,
|
|
NULL);
|
|
|
|
if (res)
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
|
|
{
|
|
if (!hwmgr->avfs_supported)
|
|
return 0;
|
|
|
|
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
|
|
if (data->need_update_smu7_dpm_table &
|
|
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
|
|
return fiji_program_memory_timing_parameters(hwmgr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
int result = 0;
|
|
uint32_t low_sclk_interrupt_threshold = 0;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_SclkThrottleLowNotification)
|
|
&& (data->low_sclk_interrupt_threshold != 0)) {
|
|
low_sclk_interrupt_threshold =
|
|
data->low_sclk_interrupt_threshold;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
|
|
|
|
result = smu7_copy_bytes_to_smc(
|
|
hwmgr,
|
|
smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable,
|
|
LowSclkInterruptThreshold),
|
|
(uint8_t *)&low_sclk_interrupt_threshold,
|
|
sizeof(uint32_t),
|
|
SMC_RAM_END);
|
|
}
|
|
result = fiji_program_mem_timing_parameters(hwmgr);
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"Failed to program memory timing parameters!",
|
|
);
|
|
return result;
|
|
}
|
|
|
|
static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
|
|
{
|
|
switch (type) {
|
|
case SMU_SoftRegisters:
|
|
switch (member) {
|
|
case HandshakeDisables:
|
|
return offsetof(SMU73_SoftRegisters, HandshakeDisables);
|
|
case VoltageChangeTimeout:
|
|
return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
|
|
case AverageGraphicsActivity:
|
|
return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
|
|
case AverageMemoryActivity:
|
|
return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
|
|
case PreVBlankGap:
|
|
return offsetof(SMU73_SoftRegisters, PreVBlankGap);
|
|
case VBlankTimeout:
|
|
return offsetof(SMU73_SoftRegisters, VBlankTimeout);
|
|
case UcodeLoadStatus:
|
|
return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
|
|
case DRAM_LOG_ADDR_H:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
|
|
case DRAM_LOG_ADDR_L:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
|
|
case DRAM_LOG_PHY_ADDR_H:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
|
|
case DRAM_LOG_PHY_ADDR_L:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
|
|
case DRAM_LOG_BUFF_SIZE:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
|
|
}
|
|
break;
|
|
case SMU_Discrete_DpmTable:
|
|
switch (member) {
|
|
case UvdBootLevel:
|
|
return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
|
|
case VceBootLevel:
|
|
return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
|
|
case LowSclkInterruptThreshold:
|
|
return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
|
|
}
|
|
break;
|
|
}
|
|
pr_warn("can't get the offset of type %x member %x\n", type, member);
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t fiji_get_mac_definition(uint32_t value)
|
|
{
|
|
switch (value) {
|
|
case SMU_MAX_LEVELS_GRAPHICS:
|
|
return SMU73_MAX_LEVELS_GRAPHICS;
|
|
case SMU_MAX_LEVELS_MEMORY:
|
|
return SMU73_MAX_LEVELS_MEMORY;
|
|
case SMU_MAX_LEVELS_LINK:
|
|
return SMU73_MAX_LEVELS_LINK;
|
|
case SMU_MAX_ENTRIES_SMIO:
|
|
return SMU73_MAX_ENTRIES_SMIO;
|
|
case SMU_MAX_LEVELS_VDDC:
|
|
return SMU73_MAX_LEVELS_VDDC;
|
|
case SMU_MAX_LEVELS_VDDGFX:
|
|
return SMU73_MAX_LEVELS_VDDGFX;
|
|
case SMU_MAX_LEVELS_VDDCI:
|
|
return SMU73_MAX_LEVELS_VDDCI;
|
|
case SMU_MAX_LEVELS_MVDD:
|
|
return SMU73_MAX_LEVELS_MVDD;
|
|
}
|
|
|
|
pr_warn("can't get the mac of %x\n", value);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t mm_boot_level_offset, mm_boot_level_value;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
smu_data->smc_state_table.UvdBootLevel = 0;
|
|
if (table_info->mm_dep_table->count > 0)
|
|
smu_data->smc_state_table.UvdBootLevel =
|
|
(uint8_t) (table_info->mm_dep_table->count - 1);
|
|
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
|
|
UvdBootLevel);
|
|
mm_boot_level_offset /= 4;
|
|
mm_boot_level_offset *= 4;
|
|
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset);
|
|
mm_boot_level_value &= 0x00FFFFFF;
|
|
mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
|
|
cgs_write_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
|
|
|
|
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_UVDDPM) ||
|
|
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StablePState))
|
|
smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_UVDDPM_SetEnabledMask,
|
|
(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
|
|
NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t mm_boot_level_offset, mm_boot_level_value;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StablePState))
|
|
smu_data->smc_state_table.VceBootLevel =
|
|
(uint8_t) (table_info->mm_dep_table->count - 1);
|
|
else
|
|
smu_data->smc_state_table.VceBootLevel = 0;
|
|
|
|
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
|
|
mm_boot_level_offset /= 4;
|
|
mm_boot_level_offset *= 4;
|
|
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset);
|
|
mm_boot_level_value &= 0xFF00FFFF;
|
|
mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
|
|
cgs_write_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
|
|
smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_VCEDPM_SetEnabledMask,
|
|
(uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
|
|
NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
|
|
{
|
|
switch (type) {
|
|
case SMU_UVD_TABLE:
|
|
fiji_update_uvd_smc_table(hwmgr);
|
|
break;
|
|
case SMU_VCE_TABLE:
|
|
fiji_update_vce_smc_table(hwmgr);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t tmp;
|
|
int result;
|
|
bool error = false;
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, DpmTable),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (0 == result)
|
|
smu_data->smu7_data.dpm_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, SoftRegisters),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result) {
|
|
data->soft_regs_start = tmp;
|
|
smu_data->smu7_data.soft_regs_start = tmp;
|
|
}
|
|
|
|
error |= (0 != result);
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, mcRegisterTable),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result)
|
|
smu_data->smu7_data.mc_reg_table_start = tmp;
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, FanTable),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result)
|
|
smu_data->smu7_data.fan_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result)
|
|
smu_data->smu7_data.arb_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, Version),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result)
|
|
hwmgr->microcode_version_info.SMC = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
return error ? -1 : 0;
|
|
}
|
|
|
|
static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
|
|
/* Program additional LP registers
|
|
* that are no longer programmed by VBIOS
|
|
*/
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return PHM_READ_INDIRECT_FIELD(hwmgr->device,
|
|
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) == 1;
|
|
}
|
|
|
|
static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
|
|
void *profile_setting)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
|
|
(hwmgr->smu_backend);
|
|
struct profile_mode_setting *setting;
|
|
struct SMU73_Discrete_GraphicsLevel *levels =
|
|
smu_data->smc_state_table.GraphicsLevel;
|
|
uint32_t array = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
|
|
|
|
uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
|
|
struct SMU73_Discrete_MemoryLevel *mclk_levels =
|
|
smu_data->smc_state_table.MemoryLevel;
|
|
uint32_t i;
|
|
uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
|
|
|
|
if (profile_setting == NULL)
|
|
return -EINVAL;
|
|
|
|
setting = (struct profile_mode_setting *)profile_setting;
|
|
|
|
if (setting->bupdate_sclk) {
|
|
if (!data->sclk_dpm_key_disabled)
|
|
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
|
|
for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
|
|
if (levels[i].ActivityLevel !=
|
|
cpu_to_be16(setting->sclk_activity)) {
|
|
levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
|
|
|
|
clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
|
|
+ offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
|
|
offset = clk_activity_offset & ~0x3;
|
|
tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
|
|
tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
|
|
|
|
}
|
|
if (levels[i].UpHyst != setting->sclk_up_hyst ||
|
|
levels[i].DownHyst != setting->sclk_down_hyst) {
|
|
levels[i].UpHyst = setting->sclk_up_hyst;
|
|
levels[i].DownHyst = setting->sclk_down_hyst;
|
|
up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
|
|
+ offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
|
|
down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
|
|
+ offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
|
|
offset = up_hyst_offset & ~0x3;
|
|
tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
|
|
tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
|
|
tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
|
|
}
|
|
}
|
|
if (!data->sclk_dpm_key_disabled)
|
|
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
|
|
}
|
|
|
|
if (setting->bupdate_mclk) {
|
|
if (!data->mclk_dpm_key_disabled)
|
|
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
|
|
for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
|
|
if (mclk_levels[i].ActivityLevel !=
|
|
cpu_to_be16(setting->mclk_activity)) {
|
|
mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
|
|
|
|
clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
|
|
+ offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
|
|
offset = clk_activity_offset & ~0x3;
|
|
tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
|
|
tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
|
|
|
|
}
|
|
if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
|
|
mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
|
|
mclk_levels[i].UpHyst = setting->mclk_up_hyst;
|
|
mclk_levels[i].DownHyst = setting->mclk_down_hyst;
|
|
up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
|
|
+ offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
|
|
down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
|
|
+ offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
|
|
offset = up_hyst_offset & ~0x3;
|
|
tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
|
|
tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
|
|
tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
|
|
}
|
|
}
|
|
if (!data->mclk_dpm_key_disabled)
|
|
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const struct pp_smumgr_func fiji_smu_funcs = {
|
|
.name = "fiji_smu",
|
|
.smu_init = &fiji_smu_init,
|
|
.smu_fini = &smu7_smu_fini,
|
|
.start_smu = &fiji_start_smu,
|
|
.check_fw_load_finish = &smu7_check_fw_load_finish,
|
|
.request_smu_load_fw = &smu7_reload_firmware,
|
|
.request_smu_load_specific_fw = NULL,
|
|
.send_msg_to_smc = &smu7_send_msg_to_smc,
|
|
.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
|
|
.get_argument = smu7_get_argument,
|
|
.download_pptable_settings = NULL,
|
|
.upload_pptable_settings = NULL,
|
|
.update_smc_table = fiji_update_smc_table,
|
|
.get_offsetof = fiji_get_offsetof,
|
|
.process_firmware_header = fiji_process_firmware_header,
|
|
.init_smc_table = fiji_init_smc_table,
|
|
.update_sclk_threshold = fiji_update_sclk_threshold,
|
|
.thermal_setup_fan_table = fiji_thermal_setup_fan_table,
|
|
.thermal_avfs_enable = fiji_thermal_avfs_enable,
|
|
.populate_all_graphic_levels = fiji_populate_all_graphic_levels,
|
|
.populate_all_memory_levels = fiji_populate_all_memory_levels,
|
|
.get_mac_definition = fiji_get_mac_definition,
|
|
.initialize_mc_reg_table = fiji_initialize_mc_reg_table,
|
|
.is_dpm_running = fiji_is_dpm_running,
|
|
.is_hw_avfs_present = fiji_is_hw_avfs_present,
|
|
.update_dpm_settings = fiji_update_dpm_settings,
|
|
};
|