Files
linux/mm/mempool.c
Linus Torvalds b687034b1a Merge tag 'slab-for-6.19' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:

 - mempool_alloc_bulk() support for upcoming users in the block layer
   that need to allocate multiple objects at once with the mempool's
   guaranteed progress semantics, which is not achievable with an
   allocation single objects in a loop. Along with refactoring and
   various improvements (Christoph Hellwig)

 - Preparations for the upcoming separation of struct slab from struct
   page, mostly by removing the struct folio layer, as the purpose of
   struct folio has shifted since it became used in slab code (Matthew
   Wilcox)

 - Modernisation of slab's boot param API usage, which removes some
   unexpected parsing corner cases (Petr Tesarik)

 - Refactoring of freelist_aba_t (now struct freelist_counters) and
   associated functions for double cmpxchg, enabled by -fms-extensions
   (Vlastimil Babka)

 - Cleanups and improvements related to sheaves caching layer, that were
   part of the full conversion to sheaves, which is planned for the next
   release (Vlastimil Babka)

* tag 'slab-for-6.19' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (42 commits)
  slab: Remove unnecessary call to compound_head() in alloc_from_pcs()
  mempool: clarify behavior of mempool_alloc_preallocated()
  mempool: drop the file name in the top of file comment
  mempool: de-typedef
  mempool: remove mempool_{init,create}_kvmalloc_pool
  mempool: legitimize the io_schedule_timeout in mempool_alloc_from_pool
  mempool: add mempool_{alloc,free}_bulk
  mempool: factor out a mempool_alloc_from_pool helper
  slab: Remove references to folios from virt_to_slab()
  kasan: Remove references to folio in __kasan_mempool_poison_object()
  memcg: Convert mem_cgroup_from_obj_folio() to mem_cgroup_from_obj_slab()
  mempool: factor out a mempool_adjust_gfp helper
  mempool: add error injection support
  mempool: improve kerneldoc comments
  mm: improve kerneldoc comments for __alloc_pages_bulk
  fault-inject: make enum fault_flags available unconditionally
  usercopy: Remove folio references from check_heap_object()
  slab: Remove folio references from kfree_nolock()
  slab: Remove folio references from kfree_rcu_sheaf()
  slab: Remove folio references from build_detached_freelist()
  ...
2025-12-03 11:53:47 -08:00

768 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* memory buffer pool support. Such pools are mostly used
* for guaranteed, deadlock-free memory allocations during
* extreme VM load.
*
* started by Ingo Molnar, Copyright (C) 2001
* debugging by David Rientjes, Copyright (C) 2015
*/
#include <linux/fault-inject.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include "slab.h"
static DECLARE_FAULT_ATTR(fail_mempool_alloc);
static DECLARE_FAULT_ATTR(fail_mempool_alloc_bulk);
static int __init mempool_faul_inject_init(void)
{
int error;
error = PTR_ERR_OR_ZERO(fault_create_debugfs_attr("fail_mempool_alloc",
NULL, &fail_mempool_alloc));
if (error)
return error;
/* booting will fail on error return here, don't bother to cleanup */
return PTR_ERR_OR_ZERO(
fault_create_debugfs_attr("fail_mempool_alloc_bulk", NULL,
&fail_mempool_alloc_bulk));
}
late_initcall(mempool_faul_inject_init);
#ifdef CONFIG_SLUB_DEBUG_ON
static void poison_error(struct mempool *pool, void *element, size_t size,
size_t byte)
{
const int nr = pool->curr_nr;
const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
int i;
pr_err("BUG: mempool element poison mismatch\n");
pr_err("Mempool %p size %zu\n", pool, size);
pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
for (i = start; i < end; i++)
pr_cont("%x ", *(u8 *)(element + i));
pr_cont("%s\n", end < size ? "..." : "");
dump_stack();
}
static void __check_element(struct mempool *pool, void *element, size_t size)
{
u8 *obj = element;
size_t i;
for (i = 0; i < size; i++) {
u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
if (obj[i] != exp) {
poison_error(pool, element, size, i);
return;
}
}
memset(obj, POISON_INUSE, size);
}
static void check_element(struct mempool *pool, void *element)
{
/* Skip checking: KASAN might save its metadata in the element. */
if (kasan_enabled())
return;
/* Mempools backed by slab allocator */
if (pool->free == mempool_kfree) {
__check_element(pool, element, (size_t)pool->pool_data);
} else if (pool->free == mempool_free_slab) {
__check_element(pool, element, kmem_cache_size(pool->pool_data));
} else if (pool->free == mempool_free_pages) {
/* Mempools backed by page allocator */
int order = (int)(long)pool->pool_data;
#ifdef CONFIG_HIGHMEM
for (int i = 0; i < (1 << order); i++) {
struct page *page = (struct page *)element;
void *addr = kmap_local_page(page + i);
__check_element(pool, addr, PAGE_SIZE);
kunmap_local(addr);
}
#else
void *addr = page_address((struct page *)element);
__check_element(pool, addr, PAGE_SIZE << order);
#endif
}
}
static void __poison_element(void *element, size_t size)
{
u8 *obj = element;
memset(obj, POISON_FREE, size - 1);
obj[size - 1] = POISON_END;
}
static void poison_element(struct mempool *pool, void *element)
{
/* Skip poisoning: KASAN might save its metadata in the element. */
if (kasan_enabled())
return;
/* Mempools backed by slab allocator */
if (pool->alloc == mempool_kmalloc) {
__poison_element(element, (size_t)pool->pool_data);
} else if (pool->alloc == mempool_alloc_slab) {
__poison_element(element, kmem_cache_size(pool->pool_data));
} else if (pool->alloc == mempool_alloc_pages) {
/* Mempools backed by page allocator */
int order = (int)(long)pool->pool_data;
#ifdef CONFIG_HIGHMEM
for (int i = 0; i < (1 << order); i++) {
struct page *page = (struct page *)element;
void *addr = kmap_local_page(page + i);
__poison_element(addr, PAGE_SIZE);
kunmap_local(addr);
}
#else
void *addr = page_address((struct page *)element);
__poison_element(addr, PAGE_SIZE << order);
#endif
}
}
#else /* CONFIG_SLUB_DEBUG_ON */
static inline void check_element(struct mempool *pool, void *element)
{
}
static inline void poison_element(struct mempool *pool, void *element)
{
}
#endif /* CONFIG_SLUB_DEBUG_ON */
static __always_inline bool kasan_poison_element(struct mempool *pool,
void *element)
{
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
return kasan_mempool_poison_object(element);
else if (pool->alloc == mempool_alloc_pages)
return kasan_mempool_poison_pages(element,
(unsigned long)pool->pool_data);
return true;
}
static void kasan_unpoison_element(struct mempool *pool, void *element)
{
if (pool->alloc == mempool_kmalloc)
kasan_mempool_unpoison_object(element, (size_t)pool->pool_data);
else if (pool->alloc == mempool_alloc_slab)
kasan_mempool_unpoison_object(element,
kmem_cache_size(pool->pool_data));
else if (pool->alloc == mempool_alloc_pages)
kasan_mempool_unpoison_pages(element,
(unsigned long)pool->pool_data);
}
static __always_inline void add_element(struct mempool *pool, void *element)
{
BUG_ON(pool->min_nr != 0 && pool->curr_nr >= pool->min_nr);
poison_element(pool, element);
if (kasan_poison_element(pool, element))
pool->elements[pool->curr_nr++] = element;
}
static void *remove_element(struct mempool *pool)
{
void *element = pool->elements[--pool->curr_nr];
BUG_ON(pool->curr_nr < 0);
kasan_unpoison_element(pool, element);
check_element(pool, element);
return element;
}
/**
* mempool_exit - exit a mempool initialized with mempool_init()
* @pool: pointer to the memory pool which was initialized with
* mempool_init().
*
* Free all reserved elements in @pool and @pool itself. This function
* only sleeps if the free_fn() function sleeps.
*
* May be called on a zeroed but uninitialized mempool (i.e. allocated with
* kzalloc()).
*/
void mempool_exit(struct mempool *pool)
{
while (pool->curr_nr) {
void *element = remove_element(pool);
pool->free(element, pool->pool_data);
}
kfree(pool->elements);
pool->elements = NULL;
}
EXPORT_SYMBOL(mempool_exit);
/**
* mempool_destroy - deallocate a memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* Free all reserved elements in @pool and @pool itself. This function
* only sleeps if the free_fn() function sleeps.
*/
void mempool_destroy(struct mempool *pool)
{
if (unlikely(!pool))
return;
mempool_exit(pool);
kfree(pool);
}
EXPORT_SYMBOL(mempool_destroy);
int mempool_init_node(struct mempool *pool, int min_nr,
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
void *pool_data, gfp_t gfp_mask, int node_id)
{
spin_lock_init(&pool->lock);
pool->min_nr = min_nr;
pool->pool_data = pool_data;
pool->alloc = alloc_fn;
pool->free = free_fn;
init_waitqueue_head(&pool->wait);
/*
* max() used here to ensure storage for at least 1 element to support
* zero minimum pool
*/
pool->elements = kmalloc_array_node(max(1, min_nr), sizeof(void *),
gfp_mask, node_id);
if (!pool->elements)
return -ENOMEM;
/*
* First pre-allocate the guaranteed number of buffers,
* also pre-allocate 1 element for zero minimum pool.
*/
while (pool->curr_nr < max(1, pool->min_nr)) {
void *element;
element = pool->alloc(gfp_mask, pool->pool_data);
if (unlikely(!element)) {
mempool_exit(pool);
return -ENOMEM;
}
add_element(pool, element);
}
return 0;
}
EXPORT_SYMBOL(mempool_init_node);
/**
* mempool_init - initialize a memory pool
* @pool: pointer to the memory pool that should be initialized
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
*
* Like mempool_create(), but initializes the pool in (i.e. embedded in another
* structure).
*
* Return: %0 on success, negative error code otherwise.
*/
int mempool_init_noprof(struct mempool *pool, int min_nr,
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
void *pool_data)
{
return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
pool_data, GFP_KERNEL, NUMA_NO_NODE);
}
EXPORT_SYMBOL(mempool_init_noprof);
/**
* mempool_create_node - create a memory pool
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
* @gfp_mask: memory allocation flags
* @node_id: numa node to allocate on
*
* this function creates and allocates a guaranteed size, preallocated
* memory pool. The pool can be used from the mempool_alloc() and mempool_free()
* functions. This function might sleep. Both the alloc_fn() and the free_fn()
* functions might sleep - as long as the mempool_alloc() function is not called
* from IRQ contexts.
*
* Return: pointer to the created memory pool object or %NULL on error.
*/
struct mempool *mempool_create_node_noprof(int min_nr,
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
void *pool_data, gfp_t gfp_mask, int node_id)
{
struct mempool *pool;
pool = kmalloc_node_noprof(sizeof(*pool), gfp_mask | __GFP_ZERO, node_id);
if (!pool)
return NULL;
if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
gfp_mask, node_id)) {
kfree(pool);
return NULL;
}
return pool;
}
EXPORT_SYMBOL(mempool_create_node_noprof);
/**
* mempool_resize - resize an existing memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
* @new_min_nr: the new minimum number of elements guaranteed to be
* allocated for this pool.
*
* This function shrinks/grows the pool. In the case of growing,
* it cannot be guaranteed that the pool will be grown to the new
* size immediately, but new mempool_free() calls will refill it.
* This function may sleep.
*
* Note, the caller must guarantee that no mempool_destroy is called
* while this function is running. mempool_alloc() & mempool_free()
* might be called (eg. from IRQ contexts) while this function executes.
*
* Return: %0 on success, negative error code otherwise.
*/
int mempool_resize(struct mempool *pool, int new_min_nr)
{
void *element;
void **new_elements;
unsigned long flags;
BUG_ON(new_min_nr <= 0);
might_sleep();
spin_lock_irqsave(&pool->lock, flags);
if (new_min_nr <= pool->min_nr) {
while (new_min_nr < pool->curr_nr) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data);
spin_lock_irqsave(&pool->lock, flags);
}
pool->min_nr = new_min_nr;
goto out_unlock;
}
spin_unlock_irqrestore(&pool->lock, flags);
/* Grow the pool */
new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
GFP_KERNEL);
if (!new_elements)
return -ENOMEM;
spin_lock_irqsave(&pool->lock, flags);
if (unlikely(new_min_nr <= pool->min_nr)) {
/* Raced, other resize will do our work */
spin_unlock_irqrestore(&pool->lock, flags);
kfree(new_elements);
goto out;
}
memcpy(new_elements, pool->elements,
pool->curr_nr * sizeof(*new_elements));
kfree(pool->elements);
pool->elements = new_elements;
pool->min_nr = new_min_nr;
while (pool->curr_nr < pool->min_nr) {
spin_unlock_irqrestore(&pool->lock, flags);
element = pool->alloc(GFP_KERNEL, pool->pool_data);
if (!element)
goto out;
spin_lock_irqsave(&pool->lock, flags);
if (pool->curr_nr < pool->min_nr) {
add_element(pool, element);
} else {
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data); /* Raced */
goto out;
}
}
out_unlock:
spin_unlock_irqrestore(&pool->lock, flags);
out:
return 0;
}
EXPORT_SYMBOL(mempool_resize);
static unsigned int mempool_alloc_from_pool(struct mempool *pool, void **elems,
unsigned int count, unsigned int allocated,
gfp_t gfp_mask)
{
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&pool->lock, flags);
if (unlikely(pool->curr_nr < count - allocated))
goto fail;
for (i = 0; i < count; i++) {
if (!elems[i]) {
elems[i] = remove_element(pool);
allocated++;
}
}
spin_unlock_irqrestore(&pool->lock, flags);
/* Paired with rmb in mempool_free(), read comment there. */
smp_wmb();
/*
* Update the allocation stack trace as this is more useful for
* debugging.
*/
for (i = 0; i < count; i++)
kmemleak_update_trace(elems[i]);
return allocated;
fail:
if (gfp_mask & __GFP_DIRECT_RECLAIM) {
DEFINE_WAIT(wait);
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(&pool->lock, flags);
/*
* Wait for someone else to return an element to @pool, but wake
* up occasionally as memory pressure might have reduced even
* and the normal allocation in alloc_fn could succeed even if
* no element was returned.
*/
io_schedule_timeout(5 * HZ);
finish_wait(&pool->wait, &wait);
} else {
/* We must not sleep if __GFP_DIRECT_RECLAIM is not set. */
spin_unlock_irqrestore(&pool->lock, flags);
}
return allocated;
}
/*
* Adjust the gfp flags for mempool allocations, as we never want to dip into
* the global emergency reserves or retry in the page allocator.
*
* The first pass also doesn't want to go reclaim, but the next passes do, so
* return a separate subset for that first iteration.
*/
static inline gfp_t mempool_adjust_gfp(gfp_t *gfp_mask)
{
*gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
return *gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
}
/**
* mempool_alloc_bulk - allocate multiple elements from a memory pool
* @pool: pointer to the memory pool
* @elems: partially or fully populated elements array
* @count: number of entries in @elem that need to be allocated
* @allocated: number of entries in @elem already allocated
*
* Allocate elements for each slot in @elem that is non-%NULL. This is done by
* first calling into the alloc_fn supplied at pool initialization time, and
* dipping into the reserved pool when alloc_fn fails to allocate an element.
*
* On return all @count elements in @elems will be populated.
*
* Return: Always 0. If it wasn't for %$#^$ alloc tags, it would return void.
*/
int mempool_alloc_bulk_noprof(struct mempool *pool, void **elems,
unsigned int count, unsigned int allocated)
{
gfp_t gfp_mask = GFP_KERNEL;
gfp_t gfp_temp = mempool_adjust_gfp(&gfp_mask);
unsigned int i = 0;
VM_WARN_ON_ONCE(count > pool->min_nr);
might_alloc(gfp_mask);
/*
* If an error is injected, fail all elements in a bulk allocation so
* that we stress the multiple elements missing path.
*/
if (should_fail_ex(&fail_mempool_alloc_bulk, 1, FAULT_NOWARN)) {
pr_info("forcing mempool usage for %pS\n",
(void *)_RET_IP_);
goto use_pool;
}
repeat_alloc:
/*
* Try to allocate the elements using the allocation callback first as
* that might succeed even when the caller's bulk allocation did not.
*/
for (i = 0; i < count; i++) {
if (elems[i])
continue;
elems[i] = pool->alloc(gfp_temp, pool->pool_data);
if (unlikely(!elems[i]))
goto use_pool;
allocated++;
}
return 0;
use_pool:
allocated = mempool_alloc_from_pool(pool, elems, count, allocated,
gfp_temp);
gfp_temp = gfp_mask;
goto repeat_alloc;
}
EXPORT_SYMBOL_GPL(mempool_alloc_bulk_noprof);
/**
* mempool_alloc - allocate an element from a memory pool
* @pool: pointer to the memory pool
* @gfp_mask: GFP_* flags. %__GFP_ZERO is not supported.
*
* Allocate an element from @pool. This is done by first calling into the
* alloc_fn supplied at pool initialization time, and dipping into the reserved
* pool when alloc_fn fails to allocate an element.
*
* This function only sleeps if the alloc_fn callback sleeps, or when waiting
* for elements to become available in the pool.
*
* Return: pointer to the allocated element or %NULL when failing to allocate
* an element. Allocation failure can only happen when @gfp_mask does not
* include %__GFP_DIRECT_RECLAIM.
*/
void *mempool_alloc_noprof(struct mempool *pool, gfp_t gfp_mask)
{
gfp_t gfp_temp = mempool_adjust_gfp(&gfp_mask);
void *element;
VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
might_alloc(gfp_mask);
repeat_alloc:
if (should_fail_ex(&fail_mempool_alloc, 1, FAULT_NOWARN)) {
pr_info("forcing mempool usage for %pS\n",
(void *)_RET_IP_);
element = NULL;
} else {
element = pool->alloc(gfp_temp, pool->pool_data);
}
if (unlikely(!element)) {
/*
* Try to allocate an element from the pool.
*
* The first pass won't have __GFP_DIRECT_RECLAIM and won't
* sleep in mempool_alloc_from_pool. Retry the allocation
* with all flags set in that case.
*/
if (!mempool_alloc_from_pool(pool, &element, 1, 0, gfp_temp)) {
if (gfp_temp != gfp_mask) {
gfp_temp = gfp_mask;
goto repeat_alloc;
}
if (gfp_mask & __GFP_DIRECT_RECLAIM) {
goto repeat_alloc;
}
}
}
return element;
}
EXPORT_SYMBOL(mempool_alloc_noprof);
/**
* mempool_alloc_preallocated - allocate an element from preallocated elements
* belonging to a memory pool
* @pool: pointer to the memory pool
*
* This function is similar to mempool_alloc(), but it only attempts allocating
* an element from the preallocated elements. It only takes a single spinlock_t
* and immediately returns if no preallocated elements are available.
*
* Return: pointer to the allocated element or %NULL if no elements are
* available.
*/
void *mempool_alloc_preallocated(struct mempool *pool)
{
void *element = NULL;
mempool_alloc_from_pool(pool, &element, 1, 0, GFP_NOWAIT);
return element;
}
EXPORT_SYMBOL(mempool_alloc_preallocated);
/**
* mempool_free_bulk - return elements to a mempool
* @pool: pointer to the memory pool
* @elems: elements to return
* @count: number of elements to return
*
* Returns a number of elements from the start of @elem to @pool if @pool needs
* replenishing and sets their slots in @elem to NULL. Other elements are left
* in @elem.
*
* Return: number of elements transferred to @pool. Elements are always
* transferred from the beginning of @elem, so the return value can be used as
* an offset into @elem for the freeing the remaining elements in the caller.
*/
unsigned int mempool_free_bulk(struct mempool *pool, void **elems,
unsigned int count)
{
unsigned long flags;
unsigned int freed = 0;
bool added = false;
/*
* Paired with the wmb in mempool_alloc(). The preceding read is
* for @element and the following @pool->curr_nr. This ensures
* that the visible value of @pool->curr_nr is from after the
* allocation of @element. This is necessary for fringe cases
* where @element was passed to this task without going through
* barriers.
*
* For example, assume @p is %NULL at the beginning and one task
* performs "p = mempool_alloc(...);" while another task is doing
* "while (!p) cpu_relax(); mempool_free(p, ...);". This function
* may end up using curr_nr value which is from before allocation
* of @p without the following rmb.
*/
smp_rmb();
/*
* For correctness, we need a test which is guaranteed to trigger
* if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
* without locking achieves that and refilling as soon as possible
* is desirable.
*
* Because curr_nr visible here is always a value after the
* allocation of @element, any task which decremented curr_nr below
* min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
* incremented to min_nr afterwards. If curr_nr gets incremented
* to min_nr after the allocation of @element, the elements
* allocated after that are subject to the same guarantee.
*
* Waiters happen iff curr_nr is 0 and the above guarantee also
* ensures that there will be frees which return elements to the
* pool waking up the waiters.
*
* For zero-minimum pools, curr_nr < min_nr (0 < 0) never succeeds,
* so waiters sleeping on pool->wait would never be woken by the
* wake-up path of previous test. This explicit check ensures the
* allocation of element when both min_nr and curr_nr are 0, and
* any active waiters are properly awakened.
*/
if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
spin_lock_irqsave(&pool->lock, flags);
while (pool->curr_nr < pool->min_nr && freed < count) {
add_element(pool, elems[freed++]);
added = true;
}
spin_unlock_irqrestore(&pool->lock, flags);
} else if (unlikely(pool->min_nr == 0 &&
READ_ONCE(pool->curr_nr) == 0)) {
/* Handle the min_nr = 0 edge case: */
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr == 0)) {
add_element(pool, elems[freed++]);
added = true;
}
spin_unlock_irqrestore(&pool->lock, flags);
}
if (unlikely(added) && wq_has_sleeper(&pool->wait))
wake_up(&pool->wait);
return freed;
}
EXPORT_SYMBOL_GPL(mempool_free_bulk);
/**
* mempool_free - return an element to the pool.
* @element: element to return
* @pool: pointer to the memory pool
*
* Returns @element to @pool if it needs replenishing, else frees it using
* the free_fn callback in @pool.
*
* This function only sleeps if the free_fn callback sleeps.
*/
void mempool_free(void *element, struct mempool *pool)
{
if (likely(element) && !mempool_free_bulk(pool, &element, 1))
pool->free(element, pool->pool_data);
}
EXPORT_SYMBOL(mempool_free);
/*
* A commonly used alloc and free fn.
*/
void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
{
struct kmem_cache *mem = pool_data;
VM_BUG_ON(mem->ctor);
return kmem_cache_alloc_noprof(mem, gfp_mask);
}
EXPORT_SYMBOL(mempool_alloc_slab);
void mempool_free_slab(void *element, void *pool_data)
{
struct kmem_cache *mem = pool_data;
kmem_cache_free(mem, element);
}
EXPORT_SYMBOL(mempool_free_slab);
/*
* A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
* specified by pool_data
*/
void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
{
size_t size = (size_t)pool_data;
return kmalloc_noprof(size, gfp_mask);
}
EXPORT_SYMBOL(mempool_kmalloc);
void mempool_kfree(void *element, void *pool_data)
{
kfree(element);
}
EXPORT_SYMBOL(mempool_kfree);
/*
* A simple mempool-backed page allocator that allocates pages
* of the order specified by pool_data.
*/
void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
{
int order = (int)(long)pool_data;
return alloc_pages_noprof(gfp_mask, order);
}
EXPORT_SYMBOL(mempool_alloc_pages);
void mempool_free_pages(void *element, void *pool_data)
{
int order = (int)(long)pool_data;
__free_pages(element, order);
}
EXPORT_SYMBOL(mempool_free_pages);