mirror of
https://github.com/torvalds/linux.git
synced 2025-12-07 20:06:24 +00:00
During initialization, the interrupt thread is created before the interrupt is enabled. The interrupt enablement happens before the actual kthread wake up point. Once the interrupt is enabled the hardware can raise an interrupt and once setup_irq() drops the descriptor lock a interrupt wake-up can happen. Even when such an interrupt can be considered premature, this is not a problem in general because at the point where the descriptor lock is dropped and the wakeup can happen, the data which is used by the thread is fully initialized. Though from the perspective of least surprise, the initial wakeup really should be performed by the setup code and not randomly by a premature interrupt. Prevent this by performing a wake-up only if the target is in state TASK_INTERRUPTIBLE, which the thread uses in wait_for_interrupt(). If the thread is still in state TASK_UNINTERRUPTIBLE, the wake-up is not lost because after the setup code completed the initial wake-up the thread will observe the IRQTF_RUNTHREAD and proceed with the handling. [ tglx: Simplified the changes and extended the changelog. ] Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://patch.msgid.link/20251121143500.42111-2-frederic@kernel.org
298 lines
7.8 KiB
C
298 lines
7.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
|
|
* Copyright (C) 2005-2006, Thomas Gleixner, Russell King
|
|
*
|
|
* This file contains the core interrupt handling code. Detailed
|
|
* information is available in Documentation/core-api/genericirq.rst
|
|
*
|
|
*/
|
|
|
|
#include <linux/irq.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include <trace/events/irq.h>
|
|
|
|
#include "internals.h"
|
|
|
|
#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
|
|
void (*handle_arch_irq)(struct pt_regs *) __ro_after_init;
|
|
#endif
|
|
|
|
/**
|
|
* handle_bad_irq - handle spurious and unhandled irqs
|
|
* @desc: description of the interrupt
|
|
*
|
|
* Handles spurious and unhandled IRQ's. It also prints a debugmessage.
|
|
*/
|
|
void handle_bad_irq(struct irq_desc *desc)
|
|
{
|
|
unsigned int irq = irq_desc_get_irq(desc);
|
|
|
|
print_irq_desc(irq, desc);
|
|
kstat_incr_irqs_this_cpu(desc);
|
|
ack_bad_irq(irq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(handle_bad_irq);
|
|
|
|
/*
|
|
* Special, empty irq handler:
|
|
*/
|
|
irqreturn_t no_action(int cpl, void *dev_id)
|
|
{
|
|
return IRQ_NONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(no_action);
|
|
|
|
static void warn_no_thread(unsigned int irq, struct irqaction *action)
|
|
{
|
|
if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
|
|
return;
|
|
|
|
printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
|
|
"but no thread function available.", irq, action->name);
|
|
}
|
|
|
|
void __irq_wake_thread(struct irq_desc *desc, struct irqaction *action)
|
|
{
|
|
/*
|
|
* In case the thread crashed and was killed we just pretend that
|
|
* we handled the interrupt. The hardirq handler has disabled the
|
|
* device interrupt, so no irq storm is lurking.
|
|
*/
|
|
if (action->thread->flags & PF_EXITING)
|
|
return;
|
|
|
|
/*
|
|
* Wake up the handler thread for this action. If the
|
|
* RUNTHREAD bit is already set, nothing to do.
|
|
*/
|
|
if (test_and_set_bit(IRQTF_RUNTHREAD, &action->thread_flags))
|
|
return;
|
|
|
|
/*
|
|
* It's safe to OR the mask lockless here. We have only two
|
|
* places which write to threads_oneshot: This code and the
|
|
* irq thread.
|
|
*
|
|
* This code is the hard irq context and can never run on two
|
|
* cpus in parallel. If it ever does we have more serious
|
|
* problems than this bitmask.
|
|
*
|
|
* The irq threads of this irq which clear their "running" bit
|
|
* in threads_oneshot are serialized via desc->lock against
|
|
* each other and they are serialized against this code by
|
|
* IRQS_INPROGRESS.
|
|
*
|
|
* Hard irq handler:
|
|
*
|
|
* spin_lock(desc->lock);
|
|
* desc->state |= IRQS_INPROGRESS;
|
|
* spin_unlock(desc->lock);
|
|
* set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
|
|
* desc->threads_oneshot |= mask;
|
|
* spin_lock(desc->lock);
|
|
* desc->state &= ~IRQS_INPROGRESS;
|
|
* spin_unlock(desc->lock);
|
|
*
|
|
* irq thread:
|
|
*
|
|
* again:
|
|
* spin_lock(desc->lock);
|
|
* if (desc->state & IRQS_INPROGRESS) {
|
|
* spin_unlock(desc->lock);
|
|
* while(desc->state & IRQS_INPROGRESS)
|
|
* cpu_relax();
|
|
* goto again;
|
|
* }
|
|
* if (!test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
|
|
* desc->threads_oneshot &= ~mask;
|
|
* spin_unlock(desc->lock);
|
|
*
|
|
* So either the thread waits for us to clear IRQS_INPROGRESS
|
|
* or we are waiting in the flow handler for desc->lock to be
|
|
* released before we reach this point. The thread also checks
|
|
* IRQTF_RUNTHREAD under desc->lock. If set it leaves
|
|
* threads_oneshot untouched and runs the thread another time.
|
|
*/
|
|
desc->threads_oneshot |= action->thread_mask;
|
|
|
|
/*
|
|
* We increment the threads_active counter in case we wake up
|
|
* the irq thread. The irq thread decrements the counter when
|
|
* it returns from the handler or in the exit path and wakes
|
|
* up waiters which are stuck in synchronize_irq() when the
|
|
* active count becomes zero. synchronize_irq() is serialized
|
|
* against this code (hard irq handler) via IRQS_INPROGRESS
|
|
* like the finalize_oneshot() code. See comment above.
|
|
*/
|
|
atomic_inc(&desc->threads_active);
|
|
|
|
/*
|
|
* This might be a premature wakeup before the thread reached the
|
|
* thread function and set the IRQTF_READY bit. It's waiting in
|
|
* kthread code with state UNINTERRUPTIBLE. Once it reaches the
|
|
* thread function it waits with INTERRUPTIBLE. The wakeup is not
|
|
* lost in that case because the thread is guaranteed to observe
|
|
* the RUN flag before it goes to sleep in wait_for_interrupt().
|
|
*/
|
|
wake_up_state(action->thread, TASK_INTERRUPTIBLE);
|
|
}
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(irqhandler_duration_check_enabled);
|
|
static u64 irqhandler_duration_threshold_ns __ro_after_init;
|
|
|
|
static int __init irqhandler_duration_check_setup(char *arg)
|
|
{
|
|
unsigned long val;
|
|
int ret;
|
|
|
|
ret = kstrtoul(arg, 0, &val);
|
|
if (ret) {
|
|
pr_err("Unable to parse irqhandler.duration_warn_us setting: ret=%d\n", ret);
|
|
return 0;
|
|
}
|
|
|
|
if (!val) {
|
|
pr_err("Invalid irqhandler.duration_warn_us setting, must be > 0\n");
|
|
return 0;
|
|
}
|
|
|
|
irqhandler_duration_threshold_ns = val * 1000;
|
|
static_branch_enable(&irqhandler_duration_check_enabled);
|
|
|
|
return 1;
|
|
}
|
|
__setup("irqhandler.duration_warn_us=", irqhandler_duration_check_setup);
|
|
|
|
static inline void irqhandler_duration_check(u64 ts_start, unsigned int irq,
|
|
const struct irqaction *action)
|
|
{
|
|
u64 delta_ns = local_clock() - ts_start;
|
|
|
|
if (unlikely(delta_ns > irqhandler_duration_threshold_ns)) {
|
|
pr_warn_ratelimited("[CPU%u] long duration of IRQ[%u:%ps], took: %llu us\n",
|
|
smp_processor_id(), irq, action->handler,
|
|
div_u64(delta_ns, NSEC_PER_USEC));
|
|
}
|
|
}
|
|
|
|
irqreturn_t __handle_irq_event_percpu(struct irq_desc *desc)
|
|
{
|
|
irqreturn_t retval = IRQ_NONE;
|
|
unsigned int irq = desc->irq_data.irq;
|
|
struct irqaction *action;
|
|
|
|
record_irq_time(desc);
|
|
|
|
for_each_action_of_desc(desc, action) {
|
|
irqreturn_t res;
|
|
|
|
/*
|
|
* If this IRQ would be threaded under force_irqthreads, mark it so.
|
|
*/
|
|
if (irq_settings_can_thread(desc) &&
|
|
!(action->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)))
|
|
lockdep_hardirq_threaded();
|
|
|
|
trace_irq_handler_entry(irq, action);
|
|
|
|
if (static_branch_unlikely(&irqhandler_duration_check_enabled)) {
|
|
u64 ts_start = local_clock();
|
|
|
|
res = action->handler(irq, action->dev_id);
|
|
irqhandler_duration_check(ts_start, irq, action);
|
|
} else {
|
|
res = action->handler(irq, action->dev_id);
|
|
}
|
|
|
|
trace_irq_handler_exit(irq, action, res);
|
|
|
|
if (WARN_ONCE(!irqs_disabled(),"irq %u handler %pS enabled interrupts\n",
|
|
irq, action->handler))
|
|
local_irq_disable();
|
|
|
|
switch (res) {
|
|
case IRQ_WAKE_THREAD:
|
|
/*
|
|
* Catch drivers which return WAKE_THREAD but
|
|
* did not set up a thread function
|
|
*/
|
|
if (unlikely(!action->thread_fn)) {
|
|
warn_no_thread(irq, action);
|
|
break;
|
|
}
|
|
|
|
__irq_wake_thread(desc, action);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
retval |= res;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
irqreturn_t handle_irq_event_percpu(struct irq_desc *desc)
|
|
{
|
|
irqreturn_t retval;
|
|
|
|
retval = __handle_irq_event_percpu(desc);
|
|
|
|
add_interrupt_randomness(desc->irq_data.irq);
|
|
|
|
if (!irq_settings_no_debug(desc))
|
|
note_interrupt(desc, retval);
|
|
return retval;
|
|
}
|
|
|
|
irqreturn_t handle_irq_event(struct irq_desc *desc)
|
|
{
|
|
irqreturn_t ret;
|
|
|
|
desc->istate &= ~IRQS_PENDING;
|
|
irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS);
|
|
raw_spin_unlock(&desc->lock);
|
|
|
|
ret = handle_irq_event_percpu(desc);
|
|
|
|
raw_spin_lock(&desc->lock);
|
|
irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
|
|
int __init set_handle_irq(void (*handle_irq)(struct pt_regs *))
|
|
{
|
|
if (handle_arch_irq)
|
|
return -EBUSY;
|
|
|
|
handle_arch_irq = handle_irq;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* generic_handle_arch_irq - root irq handler for architectures which do no
|
|
* entry accounting themselves
|
|
* @regs: Register file coming from the low-level handling code
|
|
*/
|
|
asmlinkage void noinstr generic_handle_arch_irq(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs;
|
|
|
|
irq_enter();
|
|
old_regs = set_irq_regs(regs);
|
|
handle_arch_irq(regs);
|
|
set_irq_regs(old_regs);
|
|
irq_exit();
|
|
}
|
|
#endif
|