Files
linux/fs/pidfs.c
Linus Torvalds 212c4053a1 Merge tag 'vfs-6.19-rc1.coredump' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull pidfd and coredump updates from Christian Brauner:
 "Features:

   - Expose coredump signal via pidfd

     Expose the signal that caused the coredump through the pidfd
     interface. The recent changes to rework coredump handling to rely
     on unix sockets are in the process of being used in systemd. The
     previous systemd coredump container interface requires the coredump
     file descriptor and basic information including the signal number
     to be sent to the container. This means the signal number needs to
     be available before sending the coredump to the container.

   - Add supported_mask field to pidfd

     Add a new supported_mask field to struct pidfd_info that indicates
     which information fields are supported by the running kernel. This
     allows userspace to detect feature availability without relying on
     error codes or kernel version checks.

  Cleanups:

   - Drop struct pidfs_exit_info and prepare to drop exit_info pointer,
     simplifying the internal publication mechanism for exit and
     coredump information retrievable via the pidfd ioctl

   - Use guard() for task_lock in pidfs

   - Reduce wait_pidfd lock scope

   - Add missing PIDFD_INFO_SIZE_VER1 constant

   - Add missing BUILD_BUG_ON() assert on struct pidfd_info

  Fixes:

   - Fix PIDFD_INFO_COREDUMP handling

  Selftests:

   - Split out coredump socket tests and common helpers into separate
     files for better organization

   - Fix userspace coredump client detection issues

   - Handle edge-triggered epoll correctly

   - Ignore ENOSPC errors in tests

   - Add debug logging to coredump socket tests, socket protocol tests,
     and test helpers

   - Add tests for PIDFD_INFO_COREDUMP_SIGNAL

   - Add tests for supported_mask field

   - Update pidfd header for selftests"

* tag 'vfs-6.19-rc1.coredump' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (23 commits)
  pidfs: reduce wait_pidfd lock scope
  selftests/coredump: add second PIDFD_INFO_COREDUMP_SIGNAL test
  selftests/coredump: add first PIDFD_INFO_COREDUMP_SIGNAL test
  selftests/coredump: ignore ENOSPC errors
  selftests/coredump: add debug logging to coredump socket protocol tests
  selftests/coredump: add debug logging to coredump socket tests
  selftests/coredump: add debug logging to test helpers
  selftests/coredump: handle edge-triggered epoll correctly
  selftests/coredump: fix userspace coredump client detection
  selftests/coredump: fix userspace client detection
  selftests/coredump: split out coredump socket tests
  selftests/coredump: split out common helpers
  selftests/pidfd: add second supported_mask test
  selftests/pidfd: add first supported_mask test
  selftests/pidfd: update pidfd header
  pidfs: expose coredump signal
  pidfs: drop struct pidfs_exit_info
  pidfs: prepare to drop exit_info pointer
  pidfd: add a new supported_mask field
  pidfs: add missing BUILD_BUG_ON() assert on struct pidfd_info
  ...
2025-12-01 10:17:39 -08:00

1105 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/anon_inodes.h>
#include <linux/exportfs.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/cgroup.h>
#include <linux/magic.h>
#include <linux/mount.h>
#include <linux/pid.h>
#include <linux/pidfs.h>
#include <linux/pid_namespace.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/proc_ns.h>
#include <linux/pseudo_fs.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <uapi/linux/pidfd.h>
#include <linux/ipc_namespace.h>
#include <linux/time_namespace.h>
#include <linux/utsname.h>
#include <net/net_namespace.h>
#include <linux/coredump.h>
#include <linux/xattr.h>
#include "internal.h"
#include "mount.h"
#define PIDFS_PID_DEAD ERR_PTR(-ESRCH)
static struct kmem_cache *pidfs_attr_cachep __ro_after_init;
static struct kmem_cache *pidfs_xattr_cachep __ro_after_init;
static struct path pidfs_root_path = {};
void pidfs_get_root(struct path *path)
{
*path = pidfs_root_path;
path_get(path);
}
enum pidfs_attr_mask_bits {
PIDFS_ATTR_BIT_EXIT = 0,
PIDFS_ATTR_BIT_COREDUMP = 1,
};
struct pidfs_attr {
unsigned long attr_mask;
struct simple_xattrs *xattrs;
struct /* exit info */ {
__u64 cgroupid;
__s32 exit_code;
};
__u32 coredump_mask;
__u32 coredump_signal;
};
static struct rb_root pidfs_ino_tree = RB_ROOT;
#if BITS_PER_LONG == 32
static inline unsigned long pidfs_ino(u64 ino)
{
return lower_32_bits(ino);
}
/* On 32 bit the generation number are the upper 32 bits. */
static inline u32 pidfs_gen(u64 ino)
{
return upper_32_bits(ino);
}
#else
/* On 64 bit simply return ino. */
static inline unsigned long pidfs_ino(u64 ino)
{
return ino;
}
/* On 64 bit the generation number is 0. */
static inline u32 pidfs_gen(u64 ino)
{
return 0;
}
#endif
static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
{
struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
u64 pid_ino_a = pid_a->ino;
u64 pid_ino_b = pid_b->ino;
if (pid_ino_a < pid_ino_b)
return -1;
if (pid_ino_a > pid_ino_b)
return 1;
return 0;
}
void pidfs_add_pid(struct pid *pid)
{
static u64 pidfs_ino_nr = 2;
/*
* On 64 bit nothing special happens. The 64bit number assigned
* to struct pid is the inode number.
*
* On 32 bit the 64 bit number assigned to struct pid is split
* into two 32 bit numbers. The lower 32 bits are used as the
* inode number and the upper 32 bits are used as the inode
* generation number.
*
* On 32 bit pidfs_ino() will return the lower 32 bit. When
* pidfs_ino() returns zero a wrap around happened. When a
* wraparound happens the 64 bit number will be incremented by 2
* so inode numbering starts at 2 again.
*
* On 64 bit comparing two pidfds is as simple as comparing
* inode numbers.
*
* When a wraparound happens on 32 bit multiple pidfds with the
* same inode number are likely to exist (This isn't a problem
* since before pidfs pidfds used the anonymous inode meaning
* all pidfds had the same inode number.). Userspace can
* reconstruct the 64 bit identifier by retrieving both the
* inode number and the inode generation number to compare or
* use file handles.
*/
if (pidfs_ino(pidfs_ino_nr) == 0)
pidfs_ino_nr += 2;
pid->ino = pidfs_ino_nr;
pid->stashed = NULL;
pid->attr = NULL;
pidfs_ino_nr++;
write_seqcount_begin(&pidmap_lock_seq);
rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
write_seqcount_end(&pidmap_lock_seq);
}
void pidfs_remove_pid(struct pid *pid)
{
write_seqcount_begin(&pidmap_lock_seq);
rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
write_seqcount_end(&pidmap_lock_seq);
}
void pidfs_free_pid(struct pid *pid)
{
struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr);
struct simple_xattrs *xattrs __free(kfree) = NULL;
/*
* Any dentry must've been wiped from the pid by now.
* Otherwise there's a reference count bug.
*/
VFS_WARN_ON_ONCE(pid->stashed);
/*
* This if an error occurred during e.g., task creation that
* causes us to never go through the exit path.
*/
if (unlikely(!attr))
return;
/* This never had a pidfd created. */
if (IS_ERR(attr))
return;
xattrs = no_free_ptr(attr->xattrs);
if (xattrs)
simple_xattrs_free(xattrs, NULL);
}
#ifdef CONFIG_PROC_FS
/**
* pidfd_show_fdinfo - print information about a pidfd
* @m: proc fdinfo file
* @f: file referencing a pidfd
*
* Pid:
* This function will print the pid that a given pidfd refers to in the
* pid namespace of the procfs instance.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its pid. This is
* similar to calling getppid() on a process whose parent is outside of
* its pid namespace.
*
* NSpid:
* If pid namespaces are supported then this function will also print
* the pid of a given pidfd refers to for all descendant pid namespaces
* starting from the current pid namespace of the instance, i.e. the
* Pid field and the first entry in the NSpid field will be identical.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its first NSpid
* entry and no others will be shown.
* Note that this differs from the Pid and NSpid fields in
* /proc/<pid>/status where Pid and NSpid are always shown relative to
* the pid namespace of the procfs instance. The difference becomes
* obvious when sending around a pidfd between pid namespaces from a
* different branch of the tree, i.e. where no ancestral relation is
* present between the pid namespaces:
* - create two new pid namespaces ns1 and ns2 in the initial pid
* namespace (also take care to create new mount namespaces in the
* new pid namespace and mount procfs)
* - create a process with a pidfd in ns1
* - send pidfd from ns1 to ns2
* - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
* have exactly one entry, which is 0
*/
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
{
struct pid *pid = pidfd_pid(f);
struct pid_namespace *ns;
pid_t nr = -1;
if (likely(pid_has_task(pid, PIDTYPE_PID))) {
ns = proc_pid_ns(file_inode(m->file)->i_sb);
nr = pid_nr_ns(pid, ns);
}
seq_put_decimal_ll(m, "Pid:\t", nr);
#ifdef CONFIG_PID_NS
seq_put_decimal_ll(m, "\nNSpid:\t", nr);
if (nr > 0) {
int i;
/* If nr is non-zero it means that 'pid' is valid and that
* ns, i.e. the pid namespace associated with the procfs
* instance, is in the pid namespace hierarchy of pid.
* Start at one below the already printed level.
*/
for (i = ns->level + 1; i <= pid->level; i++)
seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
}
#endif
seq_putc(m, '\n');
}
#endif
/*
* Poll support for process exit notification.
*/
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
{
struct pid *pid = pidfd_pid(file);
struct task_struct *task;
__poll_t poll_flags = 0;
poll_wait(file, &pid->wait_pidfd, pts);
/*
* Don't wake waiters if the thread-group leader exited
* prematurely. They either get notified when the last subthread
* exits or not at all if one of the remaining subthreads execs
* and assumes the struct pid of the old thread-group leader.
*/
guard(rcu)();
task = pid_task(pid, PIDTYPE_PID);
if (!task)
poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
else if (task->exit_state && !delay_group_leader(task))
poll_flags = EPOLLIN | EPOLLRDNORM;
return poll_flags;
}
static inline bool pid_in_current_pidns(const struct pid *pid)
{
const struct pid_namespace *ns = task_active_pid_ns(current);
if (ns->level <= pid->level)
return pid->numbers[ns->level].ns == ns;
return false;
}
static __u32 pidfs_coredump_mask(unsigned long mm_flags)
{
switch (__get_dumpable(mm_flags)) {
case SUID_DUMP_USER:
return PIDFD_COREDUMP_USER;
case SUID_DUMP_ROOT:
return PIDFD_COREDUMP_ROOT;
case SUID_DUMP_DISABLE:
return PIDFD_COREDUMP_SKIP;
default:
WARN_ON_ONCE(true);
}
return 0;
}
/* This must be updated whenever a new flag is added */
#define PIDFD_INFO_SUPPORTED (PIDFD_INFO_PID | \
PIDFD_INFO_CREDS | \
PIDFD_INFO_CGROUPID | \
PIDFD_INFO_EXIT | \
PIDFD_INFO_COREDUMP | \
PIDFD_INFO_SUPPORTED_MASK | \
PIDFD_INFO_COREDUMP_SIGNAL)
static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
{
struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
struct task_struct *task __free(put_task) = NULL;
struct pid *pid = pidfd_pid(file);
size_t usize = _IOC_SIZE(cmd);
struct pidfd_info kinfo = {};
struct user_namespace *user_ns;
struct pidfs_attr *attr;
const struct cred *c;
__u64 mask;
BUILD_BUG_ON(sizeof(struct pidfd_info) != PIDFD_INFO_SIZE_VER2);
if (!uinfo)
return -EINVAL;
if (usize < PIDFD_INFO_SIZE_VER0)
return -EINVAL; /* First version, no smaller struct possible */
if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
return -EFAULT;
/*
* Restrict information retrieval to tasks within the caller's pid
* namespace hierarchy.
*/
if (!pid_in_current_pidns(pid))
return -ESRCH;
attr = READ_ONCE(pid->attr);
if (mask & PIDFD_INFO_EXIT) {
if (test_bit(PIDFS_ATTR_BIT_EXIT, &attr->attr_mask)) {
smp_rmb();
kinfo.mask |= PIDFD_INFO_EXIT;
#ifdef CONFIG_CGROUPS
kinfo.cgroupid = attr->cgroupid;
kinfo.mask |= PIDFD_INFO_CGROUPID;
#endif
kinfo.exit_code = attr->exit_code;
}
}
if (mask & PIDFD_INFO_COREDUMP) {
if (test_bit(PIDFS_ATTR_BIT_COREDUMP, &attr->attr_mask)) {
smp_rmb();
kinfo.mask |= PIDFD_INFO_COREDUMP | PIDFD_INFO_COREDUMP_SIGNAL;
kinfo.coredump_mask = attr->coredump_mask;
kinfo.coredump_signal = attr->coredump_signal;
}
}
task = get_pid_task(pid, PIDTYPE_PID);
if (!task) {
/*
* If the task has already been reaped, only exit
* information is available
*/
if (!(mask & PIDFD_INFO_EXIT))
return -ESRCH;
goto copy_out;
}
c = get_task_cred(task);
if (!c)
return -ESRCH;
if ((mask & PIDFD_INFO_COREDUMP) && !kinfo.coredump_mask) {
guard(task_lock)(task);
if (task->mm) {
unsigned long flags = __mm_flags_get_dumpable(task->mm);
kinfo.coredump_mask = pidfs_coredump_mask(flags);
kinfo.mask |= PIDFD_INFO_COREDUMP;
/* No coredump actually took place, so no coredump signal. */
}
}
/* Unconditionally return identifiers and credentials, the rest only on request */
user_ns = current_user_ns();
kinfo.ruid = from_kuid_munged(user_ns, c->uid);
kinfo.rgid = from_kgid_munged(user_ns, c->gid);
kinfo.euid = from_kuid_munged(user_ns, c->euid);
kinfo.egid = from_kgid_munged(user_ns, c->egid);
kinfo.suid = from_kuid_munged(user_ns, c->suid);
kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
kinfo.mask |= PIDFD_INFO_CREDS;
put_cred(c);
#ifdef CONFIG_CGROUPS
if (!kinfo.cgroupid) {
struct cgroup *cgrp;
rcu_read_lock();
cgrp = task_dfl_cgroup(task);
kinfo.cgroupid = cgroup_id(cgrp);
kinfo.mask |= PIDFD_INFO_CGROUPID;
rcu_read_unlock();
}
#endif
/*
* Copy pid/tgid last, to reduce the chances the information might be
* stale. Note that it is not possible to ensure it will be valid as the
* task might return as soon as the copy_to_user finishes, but that's ok
* and userspace expects that might happen and can act accordingly, so
* this is just best-effort. What we can do however is checking that all
* the fields are set correctly, or return ESRCH to avoid providing
* incomplete information. */
kinfo.ppid = task_ppid_nr_ns(task, NULL);
kinfo.tgid = task_tgid_vnr(task);
kinfo.pid = task_pid_vnr(task);
kinfo.mask |= PIDFD_INFO_PID;
if (kinfo.pid == 0 || kinfo.tgid == 0)
return -ESRCH;
copy_out:
if (mask & PIDFD_INFO_SUPPORTED_MASK) {
kinfo.mask |= PIDFD_INFO_SUPPORTED_MASK;
kinfo.supported_mask = PIDFD_INFO_SUPPORTED;
}
/* Are there bits in the return mask not present in PIDFD_INFO_SUPPORTED? */
WARN_ON_ONCE(~PIDFD_INFO_SUPPORTED & kinfo.mask);
/*
* If userspace and the kernel have the same struct size it can just
* be copied. If userspace provides an older struct, only the bits that
* userspace knows about will be copied. If userspace provides a new
* struct, only the bits that the kernel knows about will be copied.
*/
return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
}
static bool pidfs_ioctl_valid(unsigned int cmd)
{
switch (cmd) {
case FS_IOC_GETVERSION:
case PIDFD_GET_CGROUP_NAMESPACE:
case PIDFD_GET_IPC_NAMESPACE:
case PIDFD_GET_MNT_NAMESPACE:
case PIDFD_GET_NET_NAMESPACE:
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
case PIDFD_GET_TIME_NAMESPACE:
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
case PIDFD_GET_UTS_NAMESPACE:
case PIDFD_GET_USER_NAMESPACE:
case PIDFD_GET_PID_NAMESPACE:
return true;
}
/* Extensible ioctls require some more careful checks. */
switch (_IOC_NR(cmd)) {
case _IOC_NR(PIDFD_GET_INFO):
/*
* Try to prevent performing a pidfd ioctl when someone
* erronously mistook the file descriptor for a pidfd.
* This is not perfect but will catch most cases.
*/
return extensible_ioctl_valid(cmd, PIDFD_GET_INFO, PIDFD_INFO_SIZE_VER0);
}
return false;
}
static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct task_struct *task __free(put_task) = NULL;
struct nsproxy *nsp __free(put_nsproxy) = NULL;
struct ns_common *ns_common = NULL;
if (!pidfs_ioctl_valid(cmd))
return -ENOIOCTLCMD;
if (cmd == FS_IOC_GETVERSION) {
if (!arg)
return -EINVAL;
__u32 __user *argp = (__u32 __user *)arg;
return put_user(file_inode(file)->i_generation, argp);
}
/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
return pidfd_info(file, cmd, arg);
task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
if (!task)
return -ESRCH;
if (arg)
return -EINVAL;
scoped_guard(task_lock, task) {
nsp = task->nsproxy;
if (nsp)
get_nsproxy(nsp);
}
if (!nsp)
return -ESRCH; /* just pretend it didn't exist */
/*
* We're trying to open a file descriptor to the namespace so perform a
* filesystem cred ptrace check. Also, we mirror nsfs behavior.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
return -EACCES;
switch (cmd) {
/* Namespaces that hang of nsproxy. */
case PIDFD_GET_CGROUP_NAMESPACE:
if (!ns_ref_get(nsp->cgroup_ns))
break;
ns_common = to_ns_common(nsp->cgroup_ns);
break;
case PIDFD_GET_IPC_NAMESPACE:
if (!ns_ref_get(nsp->ipc_ns))
break;
ns_common = to_ns_common(nsp->ipc_ns);
break;
case PIDFD_GET_MNT_NAMESPACE:
if (!ns_ref_get(nsp->mnt_ns))
break;
ns_common = to_ns_common(nsp->mnt_ns);
break;
case PIDFD_GET_NET_NAMESPACE:
if (!ns_ref_get(nsp->net_ns))
break;
ns_common = to_ns_common(nsp->net_ns);
break;
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
if (!ns_ref_get(nsp->pid_ns_for_children))
break;
ns_common = to_ns_common(nsp->pid_ns_for_children);
break;
case PIDFD_GET_TIME_NAMESPACE:
if (!ns_ref_get(nsp->time_ns))
break;
ns_common = to_ns_common(nsp->time_ns);
break;
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
if (!ns_ref_get(nsp->time_ns_for_children))
break;
ns_common = to_ns_common(nsp->time_ns_for_children);
break;
case PIDFD_GET_UTS_NAMESPACE:
if (!ns_ref_get(nsp->uts_ns))
break;
ns_common = to_ns_common(nsp->uts_ns);
break;
/* Namespaces that don't hang of nsproxy. */
case PIDFD_GET_USER_NAMESPACE:
scoped_guard(rcu) {
struct user_namespace *user_ns;
user_ns = task_cred_xxx(task, user_ns);
if (!ns_ref_get(user_ns))
break;
ns_common = to_ns_common(user_ns);
}
break;
case PIDFD_GET_PID_NAMESPACE:
scoped_guard(rcu) {
struct pid_namespace *pid_ns;
pid_ns = task_active_pid_ns(task);
if (!ns_ref_get(pid_ns))
break;
ns_common = to_ns_common(pid_ns);
}
break;
default:
return -ENOIOCTLCMD;
}
if (!ns_common)
return -EOPNOTSUPP;
/* open_namespace() unconditionally consumes the reference */
return open_namespace(ns_common);
}
static const struct file_operations pidfs_file_operations = {
.poll = pidfd_poll,
#ifdef CONFIG_PROC_FS
.show_fdinfo = pidfd_show_fdinfo,
#endif
.unlocked_ioctl = pidfd_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
struct pid *pidfd_pid(const struct file *file)
{
if (file->f_op != &pidfs_file_operations)
return ERR_PTR(-EBADF);
return file_inode(file)->i_private;
}
/*
* We're called from release_task(). We know there's at least one
* reference to struct pid being held that won't be released until the
* task has been reaped which cannot happen until we're out of
* release_task().
*
* If this struct pid has at least once been referred to by a pidfd then
* pid->attr will be allocated. If not we mark the struct pid as dead so
* anyone who is trying to register it with pidfs will fail to do so.
* Otherwise we would hand out pidfs for reaped tasks without having
* exit information available.
*
* Worst case is that we've filled in the info and the pid gets freed
* right away in free_pid() when no one holds a pidfd anymore. Since
* pidfs_exit() currently is placed after exit_task_work() we know that
* it cannot be us aka the exiting task holding a pidfd to itself.
*/
void pidfs_exit(struct task_struct *tsk)
{
struct pid *pid = task_pid(tsk);
struct pidfs_attr *attr;
#ifdef CONFIG_CGROUPS
struct cgroup *cgrp;
#endif
might_sleep();
/* Synchronize with pidfs_register_pid(). */
scoped_guard(spinlock_irq, &pid->wait_pidfd.lock) {
attr = pid->attr;
if (!attr) {
/*
* No one ever held a pidfd for this struct pid.
* Mark it as dead so no one can add a pidfs
* entry anymore. We're about to be reaped and
* so no exit information would be available.
*/
pid->attr = PIDFS_PID_DEAD;
return;
}
}
/*
* If @pid->attr is set someone might still legitimately hold a
* pidfd to @pid or someone might concurrently still be getting
* a reference to an already stashed dentry from @pid->stashed.
* So defer cleaning @pid->attr until the last reference to @pid
* is put
*/
#ifdef CONFIG_CGROUPS
rcu_read_lock();
cgrp = task_dfl_cgroup(tsk);
attr->cgroupid = cgroup_id(cgrp);
rcu_read_unlock();
#endif
attr->exit_code = tsk->exit_code;
/* Ensure that PIDFD_GET_INFO sees either all or nothing. */
smp_wmb();
set_bit(PIDFS_ATTR_BIT_EXIT, &attr->attr_mask);
}
#ifdef CONFIG_COREDUMP
void pidfs_coredump(const struct coredump_params *cprm)
{
struct pid *pid = cprm->pid;
struct pidfs_attr *attr;
attr = READ_ONCE(pid->attr);
VFS_WARN_ON_ONCE(!attr);
VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD);
/* Note how we were coredumped and that we coredumped. */
attr->coredump_mask = pidfs_coredump_mask(cprm->mm_flags) |
PIDFD_COREDUMPED;
/* If coredumping is set to skip we should never end up here. */
VFS_WARN_ON_ONCE(attr->coredump_mask & PIDFD_COREDUMP_SKIP);
/* Expose the signal number that caused the coredump. */
attr->coredump_signal = cprm->siginfo->si_signo;
smp_wmb();
set_bit(PIDFS_ATTR_BIT_COREDUMP, &attr->attr_mask);
}
#endif
static struct vfsmount *pidfs_mnt __ro_after_init;
/*
* The vfs falls back to simple_setattr() if i_op->setattr() isn't
* implemented. Let's reject it completely until we have a clean
* permission concept for pidfds.
*/
static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
return anon_inode_setattr(idmap, dentry, attr);
}
static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask,
unsigned int query_flags)
{
return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
}
static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size)
{
struct inode *inode = d_inode(dentry);
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
struct simple_xattrs *xattrs;
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs)
return 0;
return simple_xattr_list(inode, xattrs, buf, size);
}
static const struct inode_operations pidfs_inode_operations = {
.getattr = pidfs_getattr,
.setattr = pidfs_setattr,
.listxattr = pidfs_listxattr,
};
static void pidfs_evict_inode(struct inode *inode)
{
struct pid *pid = inode->i_private;
clear_inode(inode);
put_pid(pid);
}
static const struct super_operations pidfs_sops = {
.drop_inode = inode_just_drop,
.evict_inode = pidfs_evict_inode,
.statfs = simple_statfs,
};
/*
* 'lsof' has knowledge of out historical anon_inode use, and expects
* the pidfs dentry name to start with 'anon_inode'.
*/
static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
}
const struct dentry_operations pidfs_dentry_operations = {
.d_dname = pidfs_dname,
.d_prune = stashed_dentry_prune,
};
static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
struct inode *parent)
{
const struct pid *pid = inode->i_private;
if (*max_len < 2) {
*max_len = 2;
return FILEID_INVALID;
}
*max_len = 2;
*(u64 *)fh = pid->ino;
return FILEID_KERNFS;
}
static int pidfs_ino_find(const void *key, const struct rb_node *node)
{
const u64 pid_ino = *(u64 *)key;
const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
if (pid_ino < pid->ino)
return -1;
if (pid_ino > pid->ino)
return 1;
return 0;
}
/* Find a struct pid based on the inode number. */
static struct pid *pidfs_ino_get_pid(u64 ino)
{
struct pid *pid;
struct rb_node *node;
unsigned int seq;
guard(rcu)();
do {
seq = read_seqcount_begin(&pidmap_lock_seq);
node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
if (node)
break;
} while (read_seqcount_retry(&pidmap_lock_seq, seq));
if (!node)
return NULL;
pid = rb_entry(node, struct pid, pidfs_node);
/* Within our pid namespace hierarchy? */
if (pid_vnr(pid) == 0)
return NULL;
return get_pid(pid);
}
static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len,
int fh_type)
{
int ret;
u64 pid_ino;
struct path path;
struct pid *pid;
if (fh_len < 2)
return NULL;
switch (fh_type) {
case FILEID_KERNFS:
pid_ino = *(u64 *)fid;
break;
default:
return NULL;
}
pid = pidfs_ino_get_pid(pid_ino);
if (!pid)
return NULL;
ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
if (ret < 0)
return ERR_PTR(ret);
VFS_WARN_ON_ONCE(!pid->attr);
mntput(path.mnt);
return path.dentry;
}
/*
* Make sure that we reject any nonsensical flags that users pass via
* open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
* PIDFD_NONBLOCK as O_NONBLOCK.
*/
#define VALID_FILE_HANDLE_OPEN_FLAGS \
(O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
unsigned int oflags)
{
if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
return -EINVAL;
/*
* pidfd_ino_get_pid() will verify that the struct pid is part
* of the caller's pid namespace hierarchy. No further
* permission checks are needed.
*/
return 0;
}
static struct file *pidfs_export_open(const struct path *path, unsigned int oflags)
{
/*
* Clear O_LARGEFILE as open_by_handle_at() forces it and raise
* O_RDWR as pidfds always are.
*/
oflags &= ~O_LARGEFILE;
return dentry_open(path, oflags | O_RDWR, current_cred());
}
static const struct export_operations pidfs_export_operations = {
.encode_fh = pidfs_encode_fh,
.fh_to_dentry = pidfs_fh_to_dentry,
.open = pidfs_export_open,
.permission = pidfs_export_permission,
};
static int pidfs_init_inode(struct inode *inode, void *data)
{
const struct pid *pid = data;
inode->i_private = data;
inode->i_flags |= S_PRIVATE | S_ANON_INODE;
/* We allow to set xattrs. */
inode->i_flags &= ~S_IMMUTABLE;
inode->i_mode |= S_IRWXU;
inode->i_op = &pidfs_inode_operations;
inode->i_fop = &pidfs_file_operations;
inode->i_ino = pidfs_ino(pid->ino);
inode->i_generation = pidfs_gen(pid->ino);
return 0;
}
static void pidfs_put_data(void *data)
{
struct pid *pid = data;
put_pid(pid);
}
/**
* pidfs_register_pid - register a struct pid in pidfs
* @pid: pid to pin
*
* Register a struct pid in pidfs.
*
* Return: On success zero, on error a negative error code is returned.
*/
int pidfs_register_pid(struct pid *pid)
{
struct pidfs_attr *new_attr __free(kfree) = NULL;
struct pidfs_attr *attr;
might_sleep();
if (!pid)
return 0;
attr = READ_ONCE(pid->attr);
if (unlikely(attr == PIDFS_PID_DEAD))
return PTR_ERR(PIDFS_PID_DEAD);
if (attr)
return 0;
new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL);
if (!new_attr)
return -ENOMEM;
/* Synchronize with pidfs_exit(). */
guard(spinlock_irq)(&pid->wait_pidfd.lock);
attr = pid->attr;
if (unlikely(attr == PIDFS_PID_DEAD))
return PTR_ERR(PIDFS_PID_DEAD);
if (unlikely(attr))
return 0;
pid->attr = no_free_ptr(new_attr);
return 0;
}
static struct dentry *pidfs_stash_dentry(struct dentry **stashed,
struct dentry *dentry)
{
int ret;
struct pid *pid = d_inode(dentry)->i_private;
VFS_WARN_ON_ONCE(stashed != &pid->stashed);
ret = pidfs_register_pid(pid);
if (ret)
return ERR_PTR(ret);
return stash_dentry(stashed, dentry);
}
static const struct stashed_operations pidfs_stashed_ops = {
.stash_dentry = pidfs_stash_dentry,
.init_inode = pidfs_init_inode,
.put_data = pidfs_put_data,
};
static int pidfs_xattr_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *suffix, void *value, size_t size)
{
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
const char *name;
struct simple_xattrs *xattrs;
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs)
return 0;
name = xattr_full_name(handler, suffix);
return simple_xattr_get(xattrs, name, value, size);
}
static int pidfs_xattr_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap, struct dentry *unused,
struct inode *inode, const char *suffix,
const void *value, size_t size, int flags)
{
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
const char *name;
struct simple_xattrs *xattrs;
struct simple_xattr *old_xattr;
/* Ensure we're the only one to set @attr->xattrs. */
WARN_ON_ONCE(!inode_is_locked(inode));
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs) {
xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL);
if (!xattrs)
return -ENOMEM;
simple_xattrs_init(xattrs);
smp_store_release(&pid->attr->xattrs, xattrs);
}
name = xattr_full_name(handler, suffix);
old_xattr = simple_xattr_set(xattrs, name, value, size, flags);
if (IS_ERR(old_xattr))
return PTR_ERR(old_xattr);
simple_xattr_free(old_xattr);
return 0;
}
static const struct xattr_handler pidfs_trusted_xattr_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = pidfs_xattr_get,
.set = pidfs_xattr_set,
};
static const struct xattr_handler *const pidfs_xattr_handlers[] = {
&pidfs_trusted_xattr_handler,
NULL
};
static int pidfs_init_fs_context(struct fs_context *fc)
{
struct pseudo_fs_context *ctx;
ctx = init_pseudo(fc, PID_FS_MAGIC);
if (!ctx)
return -ENOMEM;
fc->s_iflags |= SB_I_NOEXEC;
fc->s_iflags |= SB_I_NODEV;
ctx->s_d_flags |= DCACHE_DONTCACHE;
ctx->ops = &pidfs_sops;
ctx->eops = &pidfs_export_operations;
ctx->dops = &pidfs_dentry_operations;
ctx->xattr = pidfs_xattr_handlers;
fc->s_fs_info = (void *)&pidfs_stashed_ops;
return 0;
}
static struct file_system_type pidfs_type = {
.name = "pidfs",
.init_fs_context = pidfs_init_fs_context,
.kill_sb = kill_anon_super,
};
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
{
struct file *pidfd_file;
struct path path __free(path_put) = {};
int ret;
/*
* Ensure that PIDFD_STALE can be passed as a flag without
* overloading other uapi pidfd flags.
*/
BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
if (ret < 0)
return ERR_PTR(ret);
VFS_WARN_ON_ONCE(!pid->attr);
flags &= ~PIDFD_STALE;
flags |= O_RDWR;
pidfd_file = dentry_open(&path, flags, current_cred());
/* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
if (!IS_ERR(pidfd_file))
pidfd_file->f_flags |= (flags & PIDFD_THREAD);
return pidfd_file;
}
void __init pidfs_init(void)
{
pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0,
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT | SLAB_PANIC), NULL);
pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache",
sizeof(struct simple_xattrs), 0,
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT | SLAB_PANIC), NULL);
pidfs_mnt = kern_mount(&pidfs_type);
if (IS_ERR(pidfs_mnt))
panic("Failed to mount pidfs pseudo filesystem");
pidfs_root_path.mnt = pidfs_mnt;
pidfs_root_path.dentry = pidfs_mnt->mnt_root;
}