Commit Graph

71 Commits

Author SHA1 Message Date
David Sterba
cc53bd2085 btrfs: add unlikely annotations to branches leading to EIO
The unlikely() annotation is a static prediction hint that compiler may
use to reorder code out of hot path. We use it elsewhere (namely
tree-checker.c) for error branches that almost never happen, where
EIO is one of them.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:26 +02:00
Qu Wenruo
a6452b85b3 btrfs: prepare zstd to support bs > ps cases
This involves converting the following functions to use proper folio
sizes/shifts:

- zstd_compress_folios()
- zstd_decompress_bio()

The function zstd_decompress() is already using block size correctly
without using page size, thus it needs no modification.

And since zstd compression is calling kmap_local_folio(), the existing
code cannot handle large folios with HIGHMEM, as kmap_local_folio()
requires us to handle one page range each time.

I do not really think it's worth to spend time on some feature that will
be deprecated eventually.  So here just add an extra explicit rejection
for bs > ps with HIGHMEM feature enabled kernels.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:24 +02:00
Qu Wenruo
c2ffb1ec1a btrfs: prepare compression folio alloc/free for bs > ps cases
This includes the following preparation for bs > ps cases:

- Always alloc/free the folio directly if bs > ps
  This adds a new @fs_info parameter for btrfs_alloc_compr_folio(), thus
  affecting all compression algorithms.

  For btrfs_free_compr_folio() it needs no parameter for now, as we can
  use the folio size to skip the caching part.

  For now the change is just to passing a @fs_info into the function,
  all the folio size assumption is still based on page size.

- Properly zero the last folio in compress_file_range()
  Since the compressed folios can be larger than a page, we need to
  properly zero the whole folio.

- Use correct folio size for btrfs_add_compressed_bio_folios()
  Instead of page size, use the correct folio size.

- Use correct folio size/shift for btrfs_compress_filemap_get_folio()
  As we are not only using simple page sized folios anymore.

- Use correct folio size for btrfs_decompress()
  There is an ASSERT() making sure the decompressed range is no larger
  than a page, which will be triggered for bs > ps cases.

- Skip readahead for compressed pages
  Similar to subpage cases.

- Make btrfs_alloc_folio_array() to accept a new @order parameter

- Add a helper to calculate the minimal folio size

All those changes should not affect the existing bs <= ps handling.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:24 +02:00
Qu Wenruo
74e8f002b7 btrfs: reduce compression workspace buffer space to block size
Currently the compression workspace buffer size is always based on
PAGE_SIZE, but btrfs has support subpage sized block size for some time.

This means for one-shot compression algorithm like lzo, we're wasting
quite some memory if the block size is smaller than page size, as the
LZO only works on one block (thus one-shot).

On 64K page sized systems with 4K block size, it means we only need at
most 8K buffer space for lzo, but in reality we're allocating 64K
buffer.

So to reduce the memory usage, change all workspace buffer to base its
size based on block size other than page size.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:16 +02:00
Qu Wenruo
0d0b80929e btrfs: rename btrfs_compress_op to btrfs_compress_levels
Since all workspace managers are per-fs, there is no need nor no way to
store them inside btrfs_compress_op::wsm anymore.

With that said, we can do the following modifications:

- Remove zstd_workspace_mananger::ops
  Zstd always grab the global btrfs_compress_op[].
- Remove btrfs_compress_op::wsm member
- Rename btrfs_compress_op to btrfs_compress_levels

This should make it more clear that btrfs_compress_levels structures are
only to indicate the levels of each compress algorithm.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:16 +02:00
Qu Wenruo
9c8f4cf456 btrfs: cleanup the per-module compression workspace managers
Since all workspaces are handled by the per-fs workspace managers, we
can safely remove the old per-module managers.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:16 +02:00
Qu Wenruo
856d46c313 btrfs: migrate to use per-fs workspace manager
There are several interfaces involved for each algorithm:

- alloc workspace
  All algorithms allocate a workspace without the need for workspace
  manager.
  So no change needs to be done.

- get workspace
  This involves checking the workspace manager to find a free one, and
  if not, allocate a new one.

  For none and lzo, they share the same generic btrfs_get_workspace()
  helper, only needs to update that function to use the per-fs manager.

  For zlib it uses a wrapper around btrfs_get_workspace(), so no special
  work needed.

  For zstd, update zstd_find_workspace() and zstd_get_workspace() to
  utilize the per-fs manager.

- put workspace
  For none/zlib/lzo they share the same btrfs_put_workspace(), update
  that function to use the per-fs manager.

  For zstd, it's zstd_put_workspace(), the same update.

- zstd specific timer
  This is the timer to reclaim workspace, change it to grab the per-fs
  workspace manager instead.

Now all workspace are managed by the per-fs manager.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:15 +02:00
Qu Wenruo
330f02b136 btrfs: add workspace manager initialization for zstd
This involves:

- Add zstd_alloc_workspace_manager() and zstd_free_workspace_manager()
  Those two functions will accept an fs_info pointer, and alloc/free
  fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD] pointer.

- Add btrfs_alloc_compress_wsm() and btrfs_free_compress_wsm()
  Those are helpers allocating the workspace managers for all
  algorithms.
  For now only zstd is supported, and the timing is a little unusual,
  the btrfs_alloc_compress_wsm() should only be called after the
  sectorsize being initialized.

  Meanwhile btrfs_free_fs_info_compress() is called in
  btrfs_free_fs_info().

- Move the definition of btrfs_compression_type to "fs.h"
  The reason is that "compression.h" has already included "fs.h", thus
  we can not just include "compression.h" to get the definition of
  BTRFS_NR_COMPRESS_TYPES to define fs_info::compr_wsm[].

For now the per-fs zstd workspace manager won't really have any effect,
and all compression is still going through the global workspace manager.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:15 +02:00
Qu Wenruo
2c5cca03c1 btrfs: add an fs_info parameter for compression workspace manager
[BACKGROUND]
Currently btrfs shares workspaces and their managers for all filesystems,
this is mostly fine as all those workspaces are using page size based
buffers, and btrfs only support block size (bs) <= page size (ps).

This means even if bs < ps, we at most waste some buffer space in the
workspace, but everything will still work fine.

The problem here is that is limiting our support for bs > ps cases.

As now a workspace now may need larger buffer to handle bs > ps cases,
but since the pool has no way to distinguish different workspaces, a
regular workspace (which is still using buffer size based on ps) can be
passed to a btrfs whose bs > ps.

In that case the buffer is not large enough, and will cause various
problems.

[ENHANCEMENT]
To prepare for the per-fs workspace migration, add an fs_info parameter
to all workspace related functions.

For now this new fs_info parameter is not yet utilized.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:15 +02:00
Qu Wenruo
0a6dcd4235 btrfs: use blocksize to check if compression is making things larger
[BEHAVIOR DIFFERENCE BETWEEN COMPRESSION ALGOS]
Currently LZO compression algorithm will check if we're making the
compressed data larger after compressing more than 2 blocks.

But zlib and zstd do the same checks after compressing more than 8192
bytes.

This is not a big deal, but since we're already supporting larger block
size (e.g. 64K block size if page size is also 64K), this check is not
suitable for all block sizes.

For example, if our page and block size are both 16KiB, and after the
first block compressed using zlib, the resulted compressed data is
slightly  larger than 16KiB, we will immediately abort the compression.

This makes zstd and zlib compression algorithms to behave slightly
different from LZO, which only aborts after compressing two blocks.

[ENHANCEMENT]
To unify the behavior, only abort the compression after compressing at
least two blocks.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-22 10:54:31 +02:00
Qu Wenruo
d71b419f27 btrfs: pass btrfs_inode pointer directly into btrfs_compress_folios()
For the 3 supported compression algorithms, two of them (zstd and zlib)
are already grabbing the btrfs inode for error messages.

It's more common to pass btrfs_inode and grab the address space from it.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-22 10:54:31 +02:00
David Sterba
44cac52341 btrfs: use our message helpers instead of pr_err/pr_warn/pr_info
Our message helpers accept NULL for the fs_info in the context that does
not provide and print the common header of the message. The use of pr_*
helpers is only for special reasons, like module loading, device
scanning or multi-line output (print-tree).

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-07-21 23:58:04 +02:00
David Sterba
05a6ec865d btrfs: use unsigned types for constants defined as bit shifts
The unsigned type is a recommended practice (CWE-190, CWE-194) for bit
shifts to avoid problems with potential unwanted sign extensions.
Although there are no such cases in btrfs codebase, follow the
recommendation.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:48 +02:00
Qu Wenruo
7bf9bfa946 btrfs: prepare compression paths for large data folios
All compression algorithms inside btrfs are not supporting large folios
due to the following points:

- btrfs_calc_input_length() is assuming page sized folio

- kmap_local_folio() usages are using offset_in_page()

Prepare them to support large data folios by:

- Add a folio parameter to btrfs_calc_input_length()
  And use that folio parameter to calculate the correct length.

  Since we're here, also add extra ASSERT()s to make sure the parameter
  @cur is inside the folio range.

  This affects only zlib and zstd. Lzo compresses at most one block at a
  time, thus not affected.

- Use offset_in_folio() to calculate the kmap_local_folio() offset
  This affects all 3 algorithms.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:45 +02:00
Thomas Gleixner
8fa7292fee treewide: Switch/rename to timer_delete[_sync]()
timer_delete[_sync]() replaces del_timer[_sync](). Convert the whole tree
over and remove the historical wrapper inlines.

Conversion was done with coccinelle plus manual fixups where necessary.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-04-05 10:30:12 +02:00
David Sterba
17b9824922 btrfs: zstd: remove local variable for storing page offsets
When using offset_in_page() it's clear what it means, we don't need to
store it in the local variable just to use it right away. There's no
change in the generated code, but keeps the declarations smaller.

Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18 20:35:42 +01:00
David Sterba
cfb999b81a btrfs: zstd: move zstd_parameters to the workspace
Reduce stack consumption of zstd_compress_folios() by 40 bytes
(10*sizeof(int)) as we can store struct zstd_parameters in the workspace
that is reused for each call.

typedef struct {
	ZSTD_compressionParameters cParams;
	ZSTD_frameParameters fParams;
} ZSTD_parameters;

typedef struct {
    unsigned windowLog;
    unsigned chainLog;
    unsigned hashLog;
    unsigned searchLog;
    unsigned minMatch;
    unsigned targetLength;
    ZSTD_strategy strategy;
} ZSTD_compressionParameters;

typedef struct {
    int contentSizeFlag;
    int checksumFlag;
    int noDictIDFlag;
} ZSTD_frameParameters;

Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18 20:35:42 +01:00
Daniel Vacek
da798fa519 btrfs: zstd: enable negative compression levels mount option
Allow using the fast modes (negative compression levels) of zstd as a
mount option.

As per the results, the compression ratio is (expectedly) lower:

for level in {-15..-1} 1 2 3; \
do printf "level %3d\n" $level; \
  mount -o compress=zstd:$level /dev/sdb /mnt/test/; \
  grep sdb /proc/mounts; \
  cp -r /usr/bin       /mnt/test/; sync; compsize /mnt/test/bin; \
  cp -r /usr/share/doc /mnt/test/; sync; compsize /mnt/test/doc; \
  cp    enwik9         /mnt/test/; sync; compsize /mnt/test/enwik9; \
  cp    linux-6.13.tar /mnt/test/; sync; compsize /mnt/test/linux-6.13.tar; \
  rm -r /mnt/test/{bin,doc,enwik9,linux-6.13.tar}; \
  umount /mnt/test/; \
done |& tee results | \
awk '/^level/{print}/^TOTAL/{print$3"\t"$2"  |"}' | paste - - - - -

		266M	bin  |	45M	doc  |	953M	wiki |	1.4G	source
=============================+===============+===============+===============+
level -15	180M	67%  |	30M	68%  |	694M	72%  |	598M	40%  |
level -14	180M	67%  |	30M	67%  |	683M	71%  |	581M	39%  |
level -13	177M	66%  |	29M	66%  |	671M	70%  |	566M	38%  |
level -12	174M	65%  |	29M	65%  |	658M	69%  |	548M	37%  |
level -11	174M	65%  |	28M	64%  |	645M	67%  |	530M	35%  |
level -10	171M	64%  |	28M	62%  |	631M	66%  |	512M	34%  |
level  -9	165M	62%  |	27M	61%  |	615M	64%  |	493M	33%  |
level  -8	161M	60%  |	27M	59%  |	598M	62%  |	475M	32%  |
level  -7	155M	58%  |	26M	58%  |	582M	61%  |	457M	30%  |
level  -6	151M	56%  |	25M	56%  |	565M	59%  |	437M	29%  |
level  -5	145M	54%  |	24M	55%  |	545M	57%  |	417M	28%  |
level  -4	139M	52%  |	23M	52%  |	520M	54%  |	391M	26%  |
level  -3	135M	50%  |	22M	50%  |	495M	51%  |	369M	24%  |
level  -2	127M	47%  |	22M	48%  |	470M	49%  |	349M	23%  |
level  -1	120M	45%  |	21M	47%  |	452M	47%  |	332M	22%  |
level   1	110M	41%  |	17M	39%  |	362M	38%  |	290M	19%  |
level   2	106M	40%  |	17M	38%  |	349M	36%  |	288M	19%  |
level   3	104M	39%  |	16M	37%  |	340M	35%  |	276M	18%  |

The samples represent some data sets that can be commonly found and show
approximate compressibility. The fast levels trade off speed for ratio
and are best suitable for highly compressible data.

As can be seen above, comparing the results to the current default zstd
level 3, the negative levels are roughly 2x worse at -15 and the
ratio increases almost linearly with each level.

Signed-off-by: Daniel Vacek <neelx@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18 20:35:41 +01:00
David Sterba
2fac7e163d btrfs: zstd: assert the timer pointer in callback
Make sure we got the right timer struct for the zstd workspace reclaim
work.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11 14:34:15 +01:00
Qu Wenruo
90275a7762 btrfs: zstd: make the compression path to handle sector size < page size
Inside zstd_compress_folios(), after exhausted one input page, we need
to switch to the next page as input.

However when counting the total input bytes (@tot_in), we always increase
it by PAGE_SIZE.

For the following case, it can cause incorrect value:

        0          32K         64K          96K
        |          |///////////||///////////|

After compressing range [32K, 64K), we switch to the next page, and
increasing @tot_in by 64K, while we only read 32K.

This will cause the @total_in to return a value larger than the input
length.

Fix it by only increase @tot_in by the input size.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11 14:34:12 +01:00
Li Zetao
b70f3a4546 btrfs: convert zstd_decompress() to take a folio
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().

Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:21 +02:00
Qu Wenruo
fd1e75d010 btrfs: make compression path to be subpage compatible
Currently btrfs compression path is not really subpage compatible, every
thing is still done in page unit.

That's fine for regular sector size and subpage routine. As even for
subpage routine compression is only enabled if the whole range is page
aligned, so reading the page cache in page unit is totally fine.

However in preparation for the future subpage perfect compression
support, we need to change the compression routine to properly handle a
subpage range.

This patch would prepare both zlib and zstd to only read the subpage
range for compression.
Lzo is already doing subpage aware read, as lzo's on-disk format is
already sectorsize dependent.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:20 +02:00
David Sterba
be9438f077 btrfs: enhance compression error messages
Add more verbose and specific messages to all main error points in
compression code for all algorithms. Currently there's no way to know
which inode is affected or where in the data errors happened.

The messages follow a common format:

- what happened
- error code if relevant
- root and inode
- additional data like offsets or lengths

There's no helper for the messages as they differ in some details and
that would be cumbersome to generalize to a single function. As all the
errors are "almost never happens" there are the unlikely annotations
done as compression is hot path.

Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:52:25 +02:00
Qu Wenruo
400b172b8c btrfs: compression: migrate compression/decompression paths to folios
For both compression and decompression paths, we always require a
"struct page **pages" and "unsigned long nr_pages", this involves quite
some part of the btrfs compression paths:

- All the compression entry points

- compressed_bio structure
  This affects both compression and decompression.

- async_extent structure

Unfortunately with all those involved parts, there is no good way to
split the conversion into smaller patches while still passing compiling.
So do this in one big conversion in one go.

Please note this is direct page->folio conversion, no change on the page
sized folio requirement yet.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:02 +02:00
Qu Wenruo
98fe01af7e btrfs: compression: convert page allocation to folio interfaces
Currently we have two wrappers to allocate and free a page for
compression usage:

- btrfs_alloc_compr_page()
- btrfs_free_compr_page()

The allocator would try to grab a page from the pool, and only allocate
a new page if the pool is empty.

The reclaimer would check if the pool is full, and if not full it would
put the page into the pool.

This patch converts both helpers to use folio interfaces, and allowing
further conversion of compression path to folios.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:02 +02:00
Qu Wenruo
6de3595473 btrfs: compression: add error handling for missed page cache
For all the supported compression algorithms, the compression path would
always need to grab the page cache, then do the compression.

Normally we would get a page reference without any problem, since the
write path should have already locked the pages in the write range.
For the sake of error handling, we should handle the page cache miss
case.

Adds a common wrapper, btrfs_compress_find_get_page(), which calls
find_get_page(), and do the error handling along with an error message.

Callers inside compression path would only need to call
btrfs_compress_find_get_page(), and error out if it returned any error.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:02 +02:00
Qu Wenruo
56596a9fdd btrfs: zstd: fix and simplify the inline extent decompression (v2)
Note: this is a fixed version that was previously reverted as
e01a83e126 ("Revert "btrfs: zstd: fix and simplify the inline extent
decompression""), with fixed parameters to memzero_page().

[BUG]
If we have a filesystem with 4k sectorsize, and an inlined compressed
extent created like this:

	item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160
		generation 8 transid 8 size 4096 nbytes 4096
		block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
		sequence 1 flags 0x0(none)
	item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24
		index 2 namelen 14 name: source_inlined
	item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69
		generation 8 type 0 (inline)
		inline extent data size 48 ram_bytes 4096 compression 3 (zstd)

Then trying to reflink that extent in an aarch64 system with 64K page
size, the reflink would just fail:

  # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
  XFS_IOC_CLONE_RANGE: Input/output error

[CAUSE]
In zstd_decompress(), we didn't treat @start_byte as just a page offset,
but also use it as an indicator on whether we should error out, without
any proper explanation (this is copied from other decompression code).

In reality, for subpage cases, although @start_byte can be non-zero,
we should never switch input/output buffer nor error out, since the whole
input/output buffer should never exceed one sector, thus we should not
need to do any buffer switch.

Thus the current code using @start_byte as a condition to switch
input/output buffer or finish the decompression is completely incorrect.

[FIX]
The fix involves several modification:

- Rename @start_byte to @dest_pgoff to properly express its meaning

- Use @sectorsize other than PAGE_SIZE to properly initialize the
  output buffer size

- Use correct destination offset inside the destination page

- Simplify the main loop
  Since the input/output buffer should never switch, we only need one
  zstd_decompress_stream() call.

- Consider early end as an error

After the fix, even on 64K page sized aarch64, above reflink now
works as expected:

  # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
  linked 4096/4096 bytes at offset 61440

And results the correct file layout:

	item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160
		generation 10 transid 10 size 65536 nbytes 4096
		block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
		sequence 1 flags 0x0(none)
	item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14
		index 3 namelen 4 name: dest
	item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83
		location key (0 UNKNOWN.0 0) type XATTR
		transid 10 data_len 37 name_len 16
		name: security.selinux
		data unconfined_u:object_r:unlabeled_t:s0
	item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53
		generation 10 type 1 (regular)
		extent data disk byte 13631488 nr 4096
		extent data offset 0 nr 4096 ram 4096
		extent compression 0 (none)

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:46 +01:00
David Sterba
2b712e3bb2 btrfs: remove unused included headers
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:46 +01:00
Linus Torvalds
e01a83e126 Revert "btrfs: zstd: fix and simplify the inline extent decompression"
This reverts commit 1e7f6def8b.

It causes my machine to not even boot, and Klara Modin reports that the
cause is that small zstd-compressed files return garbage when read.

Reported-by: Klara Modin <klarasmodin@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CABq1_vj4GpUeZpVG49OHCo-3sdbe2-2ROcu_xDvUG-6-5zPRXg@mail.gmail.com/
Reported-and-bisected-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Qu Wenruo <wqu@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-01-22 15:39:01 -08:00
Qu Wenruo
1e7f6def8b btrfs: zstd: fix and simplify the inline extent decompression
[BUG]
If we have a filesystem with 4k sectorsize, and an inlined compressed
extent created like this:

	item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160
		generation 8 transid 8 size 4096 nbytes 4096
		block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
		sequence 1 flags 0x0(none)
	item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24
		index 2 namelen 14 name: source_inlined
	item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69
		generation 8 type 0 (inline)
		inline extent data size 48 ram_bytes 4096 compression 3 (zstd)

Then trying to reflink that extent in an aarch64 system with 64K page
size, the reflink would just fail:

  # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
  XFS_IOC_CLONE_RANGE: Input/output error

[CAUSE]
In zstd_decompress(), we didn't treat @start_byte as just a page offset,
but also use it as an indicator on whether we should error out, without
any proper explanation (this is copied from other decompression code).

In reality, for subpage cases, although @start_byte can be non-zero,
we should never switch input/output buffer nor error out, since the whole
input/output buffer should never exceed one sector, thus we should not
need to do any buffer switch.

Thus the current code using @start_byte as a condition to switch
input/output buffer or finish the decompression is completely incorrect.

[FIX]
The fix involves several modification:

- Rename @start_byte to @dest_pgoff to properly express its meaning

- Use @sectorsize other than PAGE_SIZE to properly initialize the
  output buffer size

- Use correct destination offset inside the destination page

- Simplify the main loop
  Since the input/output buffer should never switch, we only need one
  zstd_decompress_stream() call.

- Consider early end as an error

After the fix, even on 64K page sized aarch64, above reflink now
works as expected:

  # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
  linked 4096/4096 bytes at offset 61440

And results the correct file layout:

	item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160
		generation 10 transid 10 size 65536 nbytes 4096
		block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
		sequence 1 flags 0x0(none)
	item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14
		index 3 namelen 4 name: dest
	item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83
		location key (0 UNKNOWN.0 0) type XATTR
		transid 10 data_len 37 name_len 16
		name: security.selinux
		data unconfined_u:object_r:unlabeled_t:s0
	item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53
		generation 10 type 1 (regular)
		extent data disk byte 13631488 nr 4096
		extent data offset 0 nr 4096 ram 4096
		extent compression 0 (none)

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-18 23:35:35 +01:00
David Sterba
9ba965dca3 btrfs: use page alloc/free wrappers for compression pages
This is a preparation for managing compression pages in a cache-like
manner, instead of asking the allocator each time. The common allocation
and free wrappers are introduced and are functionally equivalent to the
current code.

The freeing helpers need to be carefully placed where the last reference
is dropped.  This is either after directly allocating (error handling)
or when there are no other users of the pages (after copying the contents).

It's safe to not use the helper and use put_page() that will handle the
reference count. Not using the helper means there's lower number of
pages that could be reused without passing them back to allocator.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 20:27:01 +01:00
David Sterba
9580503bcb btrfs: reformat remaining kdoc style comments
Function name in the comment does not bring much value to code not
exposed as API and we don't stick to the kdoc format anymore. Update
formatting of parameter descriptions.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
8ab546bb30 btrfs: disable allocation warnings for compression workspaces
The workspaces for compression are typically much larger than a page and
for high zstd levels in the range of megabytes. There's a fallback to
vmalloc but this can still fail (see the report).

Some of the workspaces are preallocated at module load time so we have a
safe fallback, otherwise when a new workspace is needed it's allocated
but if this fails then the process waits. Which means the warning is
only causing noise and we can use the GFP flag to disable it.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=217466
Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 13:59:34 +02:00
Christoph Hellwig
7edb9a3e72 btrfs: move zero filling of compressed read bios into common code
All algorithms have to fill the remainder of the orig_bio with zeroes,
so do it in common code.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17 18:01:17 +02:00
David Sterba
3e09b5b229 btrfs: constify input buffer parameter in compression code
The input buffers passed down to compression must never be changed,
switch type to u8 as it's a raw byte buffer and use const.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:55 +01:00
David Sterba
43dd529abe btrfs: update function comments
Update, reformat or reword function comments. This also removes the kdoc
marker so we don't get reports when the function name is missing.

Changes made:

- remove kdoc markers
- reformat the brief description to be a proper sentence
- reword to imperative voice
- align parameter list
- fix typos

Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:45 +01:00
Fabio M. De Francesco
ebd23482ef btrfs: zstd: replace kmap() with kmap_local_page()
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.

Therefore, use kmap_local_page() / kunmap_local() in zstd.c because in this
file the mappings are per thread and are not visible in other contexts. In
the meanwhile use plain page_address() on output pages allocated with
the GFP_NOFS flag instead of calling kmap*() on them (since they are
always allocated from ZONE_NORMAL).

Tested with xfstests on QEMU + KVM 32 bits VM with 4GB of RAM, booting a
kernel with HIGHMEM64G enabled.

Suggested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25 17:45:40 +02:00
Schspa Shi
dd7382a2a7 btrfs: use non-bh spin_lock in zstd timer callback
This is an optimization for fix fee13fe965 ("btrfs: correct zstd
workspace manager lock to use spin_lock_bh()")

The critical region for wsm.lock is only accessed by the process context and
the softirq context.

Because in the soft interrupt, the critical section will not be
preempted by the soft interrupt again, there is no need to call
spin_lock_bh(&wsm.lock) to turn off the soft interrupt,
spin_lock(&wsm.lock) is enough for this situation.

Signed-off-by: Schspa Shi <schspa@gmail.com>
[ minor comment update ]
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:13 +02:00
Nick Terrell
cf30f6a5f0 lib: zstd: Add kernel-specific API
This patch:
- Moves `include/linux/zstd.h` -> `include/linux/zstd_lib.h`
- Updates modified zstd headers to yearless copyright
- Adds a new API in `include/linux/zstd.h` that is functionally
  equivalent to the in-use subset of the current API. Functions are
  renamed to avoid symbol collisions with zstd, to make it clear it is
  not the upstream zstd API, and to follow the kernel style guide.
- Updates all callers to use the new API.

There are no functional changes in this patch. Since there are no
functional change, I felt it was okay to update all the callers in a
single patch. Once the API is approved, the callers are mechanically
changed.

This patch is preparing for the 3rd patch in this series, which updates
zstd to version 1.4.10. Since the upstream zstd API is no longer exposed
to callers, the update can happen transparently.

Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2021-11-08 16:55:21 -08:00
David Sterba
56ee254d23 Revert "btrfs: compression: drop kmap/kunmap from zstd"
This reverts commit bbaf9715f3.

The kmaps in compression code are still needed and cause crashes on
32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004
with enabled LZO or ZSTD compression.

Example stacktrace with ZSTD on a 32bit ARM machine:

  Unable to handle kernel NULL pointer dereference at virtual address 00000000
  pgd = c4159ed3
  [00000000] *pgd=00000000
  Internal error: Oops: 5 [#1] PREEMPT SMP ARM
  Modules linked in:
  CPU: 0 PID: 210 Comm: kworker/u2:3 Not tainted 5.14.0-rc79+ #12
  Hardware name: Allwinner sun4i/sun5i Families
  Workqueue: btrfs-delalloc btrfs_work_helper
  PC is at mmiocpy+0x48/0x330
  LR is at ZSTD_compressStream_generic+0x15c/0x28c

  (mmiocpy) from [<c0629648>] (ZSTD_compressStream_generic+0x15c/0x28c)
  (ZSTD_compressStream_generic) from [<c06297dc>] (ZSTD_compressStream+0x64/0xa0)
  (ZSTD_compressStream) from [<c049444c>] (zstd_compress_pages+0x170/0x488)
  (zstd_compress_pages) from [<c0496798>] (btrfs_compress_pages+0x124/0x12c)
  (btrfs_compress_pages) from [<c043c068>] (compress_file_range+0x3c0/0x834)
  (compress_file_range) from [<c043c4ec>] (async_cow_start+0x10/0x28)
  (async_cow_start) from [<c0475c3c>] (btrfs_work_helper+0x100/0x230)
  (btrfs_work_helper) from [<c014ef68>] (process_one_work+0x1b4/0x418)
  (process_one_work) from [<c014f210>] (worker_thread+0x44/0x524)
  (worker_thread) from [<c0156aa4>] (kthread+0x180/0x1b0)
  (kthread) from [<c0100150>]

Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29 13:02:50 +02:00
Qu Wenruo
1c3dc1731e btrfs: rework btrfs_decompress_buf2page()
There are several bugs inside the function btrfs_decompress_buf2page()

- @start_byte doesn't take bvec.bv_offset into consideration
  Thus it can't handle case where the target range is not page aligned.

- Too many helper variables
  There are tons of helper variables, @buf_offset, @current_buf_start,
  @start_byte, @prev_start_byte, @working_bytes, @bytes.
  This hurts anyone who wants to read the function.

- No obvious main cursor for the iteartion
  A new problem caused by previous problem.

- Comments for parameter list makes no sense
  Like @buf_start is the offset to @buf, or offset inside the full
  decompressed extent? (Spoiler alert, the later case)
  And @total_out acts more like @buf_start + @size_of_buf.

  The worst is @disk_start.
  The real meaning of it is the file offset of the full decompressed
  extent.

This patch will rework the whole function by:

- Add a proper comment with ASCII art to explain the parameter list

- Rework parameter list
  The old @buf_start is renamed to @decompressed, to show how many bytes
  are already decompressed inside the full decompressed extent.
  The old @total_out is replaced by @buf_len, which is the decompressed
  data size.
  For old @disk_start and @bio, just pass @compressed_bio in.

- Use single main cursor
  The main cursor will be @cur_file_offset, to show what's the current
  file offset.
  Other helper variables will be declared inside the main loop, and only
  minimal amount of helper variables:
  * offset_inside_decompressed_buf:	The only real helper
  * copy_start_file_offset:		File offset we start memcpy
  * bvec_file_offset:			File offset of current bvec

Even with all these extensive comments, the final function is still
smaller than the original function, which is definitely a win.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23 13:19:04 +02:00
David Sterba
bbaf9715f3 btrfs: compression: drop kmap/kunmap from zstd
As we don't use highmem pages anymore, drop the kmap/kunmap. The kmap is
simply page_address and kunmap is a no-op.

Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23 13:18:59 +02:00
David Sterba
b0ee5e1ec4 btrfs: drop from __GFP_HIGHMEM all allocations
The highmem flag is used for allocating pages for compression and for
raid56 pages. The high memory makes sense on 32bit systems but is not
without problems. On 64bit system's it's just another layer of wrappers.

The time the pages are allocated for compression or raid56 is relatively
short (about a transaction commit), so the pages are not blocked
indefinitely. As the number of pages depends on the amount of data being
written/read, there's a theoretical problem. A fast device on a 32bit
system could use most of the low memory pool, while with the highmem
allocation that would not happen. This was possibly the original idea
long time ago, but nowadays we optimize for 64bit systems.

This patch removes all usage of the __GFP_HIGHMEM flag for page
allocation, the kmap/kunmap are still in place and will be removed in
followup patches. Remaining is masking out the bit in
alloc_extent_state and __lookup_free_space_inode, that can safely stay.

Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23 13:18:59 +02:00
Ira Weiny
d048b9c2a7 btrfs: use memzero_page() instead of open coded kmap pattern
There are many places where kmap/memset/kunmap patterns occur.

Use the newly lifted memzero_page() to eliminate direct uses of kmap and
leverage the new core functions use of kmap_local_page().

The development of this patch was aided by the following coccinelle
script:

// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/memset/kunmap pattern and replace with memset*page calls
//
// NOTE: Offsets and other expressions may be more complex than what the script
// will automatically generate.  Therefore a catchall rule is provided to find
// the pattern which then must be evaluated by hand.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:

//
// Then the memset pattern
//
@ memset_rule1 @
expression page, V, L, Off;
identifier ptr;
type VP;
@@

(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
-memset(ptr, 0, L);
+memzero_page(page, 0, L);
|
-memset(ptr + Off, 0, L);
+memzero_page(page, Off, L);
|
-memset(ptr, V, L);
+memset_page(page, V, 0, L);
|
-memset(ptr + Off, V, L);
+memset_page(page, V, Off, L);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)

// Remove any pointers left unused
@
depends on memset_rule1
@
identifier memset_rule1.ptr;
type VP, VP1;
@@

-VP ptr;
	... when != ptr;
? VP1 ptr;

//
// Catch all
//
@ memset_rule2 @
expression page;
identifier ptr;
expression GenTo, GenSize, GenValue;
type VP;
@@

(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
//
// Some call sites have complex expressions within the memset/memcpy
// The follow are catch alls which need to be evaluated by hand.
//
-memset(GenTo, 0, GenSize);
+memzero_pageExtra(page, GenTo, GenSize);
|
-memset(GenTo, GenValue, GenSize);
+memset_pageExtra(page, GenValue, GenTo, GenSize);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)

// Remove any pointers left unused
@
depends on memset_rule2
@
identifier memset_rule2.ptr;
type VP, VP1;
@@

-VP ptr;
	... when != ptr;
? VP1 ptr;

// </smpl>

Link: https://lkml.kernel.org/r/20210309212137.2610186-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:27 -07:00
Ira Weiny
3590ec5899 btrfs: use memcpy_[to|from]_page() and kmap_local_page()
There are many places where the pattern kmap/memcpy/kunmap occurs.

This pattern was lifted to the core common functions
memcpy_[to|from]_page().

Use these new functions to reduce the code, eliminate direct uses of
kmap, and leverage the new core functions use of kmap_local_page().

Also, there is 1 place where a kmap/memcpy is followed by an
optional memset.  Here we leave the kmap open coded to avoid remapping
the page but use kmap_local_page() directly.

Development of this patch was aided by the coccinelle script:

// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/memcpy/kunmap pattern and replace with memcpy*page calls
//
// NOTE: Offsets and other expressions may be more complex than what the script
// will automatically generate.  Therefore a catchall rule is provided to find
// the pattern which then must be evaluated by hand.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:

//
// simple memcpy version
//
@ memcpy_rule1 @
expression page, T, F, B, Off;
identifier ptr;
type VP;
@@

(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
-memcpy(ptr + Off, F, B);
+memcpy_to_page(page, Off, F, B);
|
-memcpy(ptr, F, B);
+memcpy_to_page(page, 0, F, B);
|
-memcpy(T, ptr + Off, B);
+memcpy_from_page(T, page, Off, B);
|
-memcpy(T, ptr, B);
+memcpy_from_page(T, page, 0, B);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)

// Remove any pointers left unused
@
depends on memcpy_rule1
@
identifier memcpy_rule1.ptr;
type VP, VP1;
@@

-VP ptr;
	... when != ptr;
? VP1 ptr;

//
// Some callers kmap without a temp pointer
//
@ memcpy_rule2 @
expression page, T, Off, F, B;
@@

<+...
(
-memcpy(kmap(page) + Off, F, B);
+memcpy_to_page(page, Off, F, B);
|
-memcpy(kmap(page), F, B);
+memcpy_to_page(page, 0, F, B);
|
-memcpy(T, kmap(page) + Off, B);
+memcpy_from_page(T, page, Off, B);
|
-memcpy(T, kmap(page), B);
+memcpy_from_page(T, page, 0, B);
)
...+>
-kunmap(page);
// No need for the ptr variable removal

//
// Catch all
//
@ memcpy_rule3 @
expression page;
expression GenTo, GenFrom, GenSize;
identifier ptr;
type VP;
@@

(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
//
// Some call sites have complex expressions within the memcpy
// match a catch all to be evaluated by hand.
//
-memcpy(GenTo, GenFrom, GenSize);
+memcpy_to_pageExtra(page, GenTo, GenFrom, GenSize);
+memcpy_from_pageExtra(GenTo, page, GenFrom, GenSize);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)

// Remove any pointers left unused
@
depends on memcpy_rule3
@
identifier memcpy_rule3.ptr;
type VP, VP1;
@@

-VP ptr;
	... when != ptr;
? VP1 ptr;

// <smpl>

Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-26 12:45:15 +01:00
David Sterba
1e00235160 btrfs: compression: inline free_workspace
Replace indirect calls to free_workspace by switch and calls to the
specific callbacks. This is mainly to get rid of the indirection due to
spectre vulnerability mitigations.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:59 +01:00
David Sterba
c778df1406 btrfs: compression: inline alloc_workspace
Replace indirect calls to alloc_workspace by switch and calls to the
specific callbacks. This is mainly to get rid of the indirection due to
spectre vulnerability mitigations.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:58 +01:00
David Sterba
bd3a5287cc btrfs: compression: inline put_workspace
Similar to get_workspace, majority of the callbacks is trivial, we don't
gain anything by the indirection, so replace them by a switch function.
Trivial callback implementations use the helper.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:58 +01:00
David Sterba
6a0d12724b btrfs: compression: inline get_workspace
Majority of the callbacks is trivial, we don't gain anything by the
indirection, so replace them by a switch function.

ZLIB needs to adjust level in the callback and ZSTD workspace management
is complex, the rest is call to the helper.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:58 +01:00
David Sterba
d20f395f98 btrfs: compression: export alloc/free/get/put callbacks of all algos
The indirect calls will be replaced by a switch in compression.c.
(Switch is faster than indirect calls with when Spectre mitigations are
enabled).

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:58 +01:00