When page del from buddy and need expand, it will account free_pages in
zone's migratetype.
The current way is to subtract the page number of the current order when
deleting, and then add it back when expanding.
This is unnecessary, as when migrating the same type, we can directly
record the difference between the high-order pages and the expand added,
and then subtract it directly.
This patch merge that, only when del and expand done, then account
free_pages.
Link: https://lkml.kernel.org/r/20240826064048.187790-1-link@vivo.com
Signed-off-by: Huan Yang <link@vivo.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This is an attempt to mitigate the issue of running out of memory when THP
is always enabled. During runtime whenever a THP is being faulted in
(__do_huge_pmd_anonymous_page) or collapsed by khugepaged
(collapse_huge_page), the THP is added to _deferred_list. Whenever memory
reclaim happens in linux, the kernel runs the deferred_split shrinker
which goes through the _deferred_list.
If the folio was partially mapped, the shrinker attempts to split it. If
the folio is not partially mapped, the shrinker checks if the THP was
underused, i.e. how many of the base 4K pages of the entire THP were
zero-filled. If this number goes above a certain threshold (decided by
/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none), the
shrinker will attempt to split that THP. Then at remap time, the pages
that were zero-filled are mapped to the shared zeropage, hence saving
memory.
Link: https://lkml.kernel.org/r/20240830100438.3623486-6-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Suggested-by: Rik van Riel <riel@surriel.com>
Co-authored-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexander Zhu <alexlzhu@fb.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nico Pache <npache@redhat.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuang Zhai <zhais@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Shuang Zhai <szhai2@cs.rochester.edu>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: split underused THPs", v5.
The current upstream default policy for THP is always. However, Meta uses
madvise in production as the current THP=always policy vastly
overprovisions THPs in sparsely accessed memory areas, resulting in
excessive memory pressure and premature OOM killing. Using madvise +
relying on khugepaged has certain drawbacks over THP=always. Using
madvise hints mean THPs aren't "transparent" and require userspace
changes. Waiting for khugepaged to scan memory and collapse pages into
THP can be slow and unpredictable in terms of performance (i.e. you dont
know when the collapse will happen), while production environments require
predictable performance. If there is enough memory available, its better
for both performance and predictability to have a THP from fault time,
i.e. THP=always rather than wait for khugepaged to collapse it, and deal
with sparsely populated THPs when the system is running out of memory.
This patch series is an attempt to mitigate the issue of running out of
memory when THP is always enabled. During runtime whenever a THP is being
faulted in or collapsed by khugepaged, the THP is added to a list.
Whenever memory reclaim happens, the kernel runs the deferred_split
shrinker which goes through the list and checks if the THP was underused,
i.e. how many of the base 4K pages of the entire THP were zero-filled.
If this number goes above a certain threshold, the shrinker will attempt
to split that THP. Then at remap time, the pages that were zero-filled
are mapped to the shared zeropage, hence saving memory. This method
avoids the downside of wasting memory in areas where THP is sparsely
filled when THP is always enabled, while still providing the upside THPs
like reduced TLB misses without having to use madvise.
Meta production workloads that were CPU bound (>99% CPU utilzation) were
tested with THP shrinker. The results after 2 hours are as follows:
| THP=madvise | THP=always | THP=always
| | | + shrinker series
| | | + max_ptes_none=409
-----------------------------------------------------------------------------
Performance improvement | - | +1.8% | +1.7%
(over THP=madvise) | | |
-----------------------------------------------------------------------------
Memory usage | 54.6G | 58.8G (+7.7%) | 55.9G (+2.4%)
-----------------------------------------------------------------------------
max_ptes_none=409 means that any THP that has more than 409 out of 512
(80%) zero filled filled pages will be split.
To test out the patches, the below commands without the shrinker will
invoke OOM killer immediately and kill stress, but will not fail with the
shrinker:
echo 450 > /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none
mkdir /sys/fs/cgroup/test
echo $$ > /sys/fs/cgroup/test/cgroup.procs
echo 20M > /sys/fs/cgroup/test/memory.max
echo 0 > /sys/fs/cgroup/test/memory.swap.max
# allocate twice memory.max for each stress worker and touch 40/512 of
# each THP, i.e. vm-stride 50K.
# With the shrinker, max_ptes_none of 470 and below won't invoke OOM
# killer.
# Without the shrinker, OOM killer is invoked immediately irrespective
# of max_ptes_none value and kills stress.
stress --vm 1 --vm-bytes 40M --vm-stride 50K
This patch (of 5):
Here being unused means containing only zeros and inaccessible to
userspace. When splitting an isolated thp under reclaim or migration, the
unused subpages can be mapped to the shared zeropage, hence saving memory.
This is particularly helpful when the internal fragmentation of a thp is
high, i.e. it has many untouched subpages.
This is also a prerequisite for THP low utilization shrinker which will be
introduced in later patches, where underutilized THPs are split, and the
zero-filled pages are freed saving memory.
Link: https://lkml.kernel.org/r/20240830100438.3623486-1-usamaarif642@gmail.com
Link: https://lkml.kernel.org/r/20240830100438.3623486-3-usamaarif642@gmail.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Tested-by: Shuang Zhai <zhais@google.com>
Cc: Alexander Zhu <alexlzhu@fb.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nico Pache <npache@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuang Zhai <szhai2@cs.rochester.edu>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The mutex array pointer shares a cacheline with the spinlock:
ffffffff84187480 B hugetlb_fault_mutex_table
ffffffff84187488 B hugetlb_lock
This is because the former is annotated with a macro forcing cacheline
alignment. I suspect it was meant to be the variant which on top of it
makes sure the object does not share the cacheline with anyone.
Since array pointer itself is de facto read-only such an annotation does
not make sense there anyway. Instead mark it __ro_after_init along with
the size var.
Do however move the spinlock out of the way.
[akpm@linux-foundation.org: move section directives to the end of the definitions, per convention]
[akpm@linux-foundation.org: DEFINE_SPINLOCK doesn't permit section modifiers at end-of-definition]
Link: https://lkml.kernel.org/r/20240828160704.1425767-1-mjguzik@gmail.com
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Although shmem_get_folio_gfp() is correctly putting inodes on the
shrinklist according to the folio size, shmem_unused_huge_shrink() was
still dealing with that shrinklist in terms of HPAGE_PMD_SIZE.
Generalize that; and to handle the mixture of sizes more sensibly,
shmem_alloc_and_add_folio() give it a number of pages to be freed
(approximate: no need to minimize that with an exact calculation) instead
of a number of inodes to split.
[akpm@linux-foundation.org: comment tweak, per David]
Link: https://lkml.kernel.org/r/d8c40850-6774-7a93-1e2c-8d941683b260@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There has been a long-standing and very minor off-by-one, where
shmem_get_folio_gfp() decides if a large folio extends beyond i_size far
enough to leave a page or more for freeing later under pressure.
This is not something needed for stable: but it will be proportionately
more significant as support for smaller large folios is added, and is best
fixed before duplicating the check in other places.
Link: https://lkml.kernel.org/r/d8e75079-af2d-8519-56df-6be1dccc247a@google.com
Fixes: 779750d20b ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit 0742cadf5e4c ("mm/damon/lru_sort: adjust local
variable to dynamic allocation").
The commit was introduced to avoid unnecessary usage of stack memory for
per-scheme region priorities histogram buffer. The fix is nice, but the
point of the fix looks not very clear if the commit message is not read
together. That's mainly because the buffer is a private field, which
means it is hidden from the DAMON API users. That's not the fault of the
fix but the underlying data structure.
Now the per-scheme histogram buffer is gone, so the problem that the
commit was fixing is also removed. The use of kmemdup() has no more point
but just making the code bit difficult to understand. Revert the fix.
Link: https://lkml.kernel.org/r/20240826042323.87025-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "replace per-quota region priorities histogram buffer with
per-context one".
Each DAMOS quota (struct damos_quota) maintains a histogram for total
regions size per its prioritization score. DAMOS calcultes minimum
prioritization score of regions that are ok to apply the DAMOS action to
while respecting the quota. The histogram is constructed only for the
calculation of the minimum score in damos_adjust_quota() for each quota
which called by kdamond_fn().
Hence, there is no real reason to have per-quota histogram. Only
per-kdamond histogram is needed, since parallel kdamonds could have races
otherwise. The current implementation is only wasting the memory, and can
easily cause unintended stack usage[1].
So, introducing a per-kdamond histogram and replacing the per-quota one
with it would be the right solution for the issue. However, supporting
multiple DAMON contexts per kdamond is still an ongoing work[2] without a
clear estimated time of arrival. Meanwhile, per-context histogram could
be an effective and straightforward solution having no blocker. Let's fix
the problem first in the way.
This patch (of 4):
Introduce per-context buffer for region priority scores-total size
histogram. Same to the per-quota one (->histogram of struct damos_quota),
the new buffer is hidden from DAMON API users by being defined as a
private field of DAMON context structure. It is dynamically allocated and
de-allocated at the beginning and ending of the execution of the kdamond
by kdamond_fn() itself.
[1] commit 0742cadf5e4c ("mm/damon/lru_sort: adjust local variable to dynamic allocation")
[2] https://lore.kernel.org/20240531122320.909060-1-yorha.op@gmail.com
Link: https://lkml.kernel.org/r/20240826042323.87025-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20240826042323.87025-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: count the number of anonymous THPs per size", v4.
Knowing the number of transparent anon THPs in the system is crucial
for performance analysis. It helps in understanding the ratio and
distribution of THPs versus small folios throughout the system.
Additionally, partial unmapping by userspace can lead to significant waste
of THPs over time and increase memory reclamation pressure. We need this
information for comprehensive system tuning.
This patch (of 2):
Let's track for each anonymous THP size, how many of them are currently
allocated. We'll track the complete lifespan of an anon THP, starting
when it becomes an anon THP ("large anon folio") (->mapping gets set),
until it gets freed (->mapping gets cleared).
Introduce a new "nr_anon" counter per THP size and adjust the
corresponding counter in the following cases:
* We allocate a new THP and call folio_add_new_anon_rmap() to map
it the first time and turn it into an anon THP.
* We split an anon THP into multiple smaller ones.
* We migrate an anon THP, when we prepare the destination.
* We free an anon THP back to the buddy.
Note that AnonPages in /proc/meminfo currently tracks the total number of
*mapped* anonymous *pages*, and therefore has slightly different
semantics. In the future, we might also want to track "nr_anon_mapped"
for each THP size, which might be helpful when comparing it to the number
of allocated anon THPs (long-term pinning, stuck in swapcache, memory
leaks, ...).
Further note that for now, we only track anon THPs after they got their
->mapping set, for example via folio_add_new_anon_rmap(). If we would
allocate some in the swapcache, they will only show up in the statistics
for now after they have been mapped to user space the first time, where we
call folio_add_new_anon_rmap().
[akpm@linux-foundation.org: documentation fixups, per David]
Link: https://lkml.kernel.org/r/3e8add35-e26b-443b-8a04-1078f4bc78f6@redhat.com
Link: https://lkml.kernel.org/r/20240824010441.21308-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240824010441.21308-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chuanhua Han <hanchuanhua@oppo.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shuai Yuan <yuanshuai@oppo.com>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Previously we had a situation where shmem mTHP controls and stats were not
exposed for some supported sizes and were exposed for some unsupported
sizes. So let's clean that up.
Anon mTHP can support all large orders [2, PMD_ORDER]. But shmem can
support all large orders [1, MAX_PAGECACHE_ORDER]. However, per-size
shmem controls and stats were previously being exposed for all the anon
mTHP orders, meaning order-1 was not present, and for arm64 64K base
pages, orders 12 and 13 were exposed but were not supported internally.
Tidy this all up by defining ctrl and stats attribute groups for anon and
file separately. Anon ctrl and stats groups are populated for all orders
in THP_ORDERS_ALL_ANON and file ctrl and stats groups are populated for
all orders in THP_ORDERS_ALL_FILE_DEFAULT.
Additionally, create "any" ctrl and stats attribute groups which are
populated for all orders in (THP_ORDERS_ALL_ANON |
THP_ORDERS_ALL_FILE_DEFAULT). swpout stats use this since they apply to
anon and shmem.
The side-effect of all this is that different hugepage-*kB directories
contain different sets of controls and stats, depending on which memory
types support that size. This approach is preferred over the alternative,
which is to populate dummy controls and stats for memory types that do not
support a given size.
[ryan.roberts@arm.com: file pages and shmem can also be split]
Link: https://lkml.kernel.org/r/f7ced14c-8bc5-405f-bee7-94f63980f525@arm.comLink: https://lkml.kernel.org/r/20240808111849.651867-3-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: Barry Song <baohua@kernel.org>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit b15c87263a ("hwpoison, memory_hotplug: allow hwpoisoned pages to
be offlined") don't handle the hugetlb pages, the endless loop still occur
if offline a hwpoison hugetlb page, luckly, after the commit e591ef7d96
("mm, hwpoison,hugetlb,memory_hotplug: hotremove memory section with
hwpoisoned hugepage"), the HPageMigratable of hugetlb page will be
cleared, and the hwpoison hugetlb page will be skipped in
scan_movable_pages(), so the endless loop issue is fixed.
However if the HPageMigratable() check passed(without reference and lock),
the hugetlb page may be hwpoisoned, it won't cause issue since the
hwpoisoned page will be handled correctly in the next movable pages scan
loop, and it will be isolated in do_migrate_range() but fails to migrate.
In order to avoid the unnecessary isolation and unify all hwpoisoned page
handling, let's unconditionally check hwpoison firstly, and if it is a
hwpoisoned hugetlb page, try to unmap it as the catch all safety net like
normal page does.
Link: https://lkml.kernel.org/r/20240827114728.3212578-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The test depends on registration of DAMON_OPS_PADDR. It would be
registered only when CONFIG_DAMON_PADDR is set. DAMON core kunit tests do
fake ops registration for such case. However, the functions for such fake
ops registration is not available to DAMON debugfs interface. Just skip
the test in the case.
Link: https://lkml.kernel.org/r/20240827030336.7930-8-sj@kernel.org
Fixes: 999b946797 ("mm/damon/dbgfs-test: fix is_target_id() change")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The test depends on registration of DAMON_OPS_PADDR. It would be
registered only when CONFIG_DAMON_PADDR is set. DAMON core kunit tests do
fake ops registration for such case. However, the functions for such fake
ops registration is not available to DAMON debugfs interface. Just skip
the test in the case.
Link: https://lkml.kernel.org/r/20240827030336.7930-7-sj@kernel.org
Fixes: 999b946797 ("mm/damon/dbgfs-test: fix is_target_id() change")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The aim is to simplify and making the vm_area_alloc_pages()
function less confusing as it became more clogged nowadays:
- eliminate a "bulk_gfp" variable and do not overwrite a gfp
flag for bulk allocator;
- drop __GFP_NOFAIL flag for high-order-page requests on upper
layer. It becomes less spread between levels when it comes to
__GFP_NOFAIL allocations;
- add a comment about a fallback path if high-order attempt is
unsuccessful because for such cases __GFP_NOFAIL is dropped;
- fix a typo in a commit message.
Link: https://lkml.kernel.org/r/20240827190916.34242-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In commit 714965ca82 ("mm/mmap: start distinguishing if vma can be
removed in mergeability test") we relaxed the VMA merge rules for VMAs
possessing a vm_ops->close() hook, permitting this operation in instances
where we wouldn't delete the VMA as part of the merge operation.
This was later corrected in commit fc0c8f9089 ("mm, mmap: fix
vma_merge() case 7 with vma_ops->close") to account for a subtle case that
the previous commit had not taken into account.
In both instances, we first rely on is_mergeable_vma() to determine
whether we might be dealing with a VMA that might be removed, taking
advantage of the fact that a 'previous' VMA will never be deleted, only
VMAs that follow it.
The second patch corrects the instance where a merge of the previous VMA
into a subsequent one did not correctly check whether the subsequent VMA
had a vm_ops->close() handler.
Both changes prevent merge cases that are actually permissible (for
instance a merge of a VMA into a following VMA with a vm_ops->close(), but
with no previous VMA, which would result in the next VMA being extended,
not deleted).
In addition, both changes fail to consider the case where a VMA that would
otherwise be merged with the previous and next VMA might have
vm_ops->close(), on the assumption that for this to be the case, all three
would have to have the same vma->vm_file to be mergeable and thus the same
vm_ops.
And in addition both changes operate at 50,000 feet, trying to guess
whether a VMA will be deleted.
As we have majorly refactored the VMA merge operation and de-duplicated
code to the point where we know precisely where deletions will occur, this
patch removes the aforementioned checks altogether and instead explicitly
checks whether a VMA will be deleted.
In cases where a reduced merge is still possible (where we merge both
previous and next VMA but the next VMA has a vm_ops->close hook, meaning
we could just merge the previous and current VMA), we do so, otherwise the
merge is not permitted.
We take advantage of our userland testing to assert that this functions
correctly - replacing the previous limited vm_ops->close() tests with
tests for every single case where we delete a VMA.
We also update all testing for both new and modified VMAs to set
vma->vm_ops->close() in every single instance where this would not prevent
the merge, to assert that we never do so.
Link: https://lkml.kernel.org/r/9f96b8cfeef3d14afabddac3d6144afdfbef2e22.1725040657.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Bert Karwatzki <spasswolf@web.de>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Abstract vma_merge_new_vma() to use vma_merge_struct and rename the
resultant function vma_merge_new_range() to be clear what the purpose of
this function is - a new VMA is desired in the specified range, and we
wish to see if it is possible to 'merge' surrounding VMAs into this range
rather than having to allocate a new VMA.
Note that this function uses vma_extend() exclusively, so adopts its
requirement that the iterator point at or before the gap. We add an
assert to this effect.
This is as opposed to vma_merge_existing_range(), which will be introduced
in a subsequent commit, and provide the same functionality for cases in
which we are modifying an existing VMA.
In mmap_region() and do_brk_flags() we open code scenarios where we prefer
to use vma_expand() rather than invoke a full vma_merge() operation.
Abstract this logic and eliminate all of the open-coding, and also use the
same logic for all cases where we add new VMAs to, rather than ultimately
use vma_merge(), rather use vma_expand().
Doing so removes duplication and simplifies VMA merging in all such cases,
laying the ground for us to eliminate the merging of new VMAs in
vma_merge() altogether.
Also add the ability for the vmg to track state, and able to report
errors, allowing for us to differentiate a failed merge from an inability
to allocate memory in callers.
This makes it far easier to understand what is happening in these cases
avoiding confusion, bugs and allowing for future optimisation.
Also introduce vma_iter_next_rewind() to allow for retrieval of the next,
and (optionally) the prev VMA, rewinding to the start of the previous gap.
Introduce are_anon_vmas_compatible() to abstract individual VMA anon_vma
comparison for the case of merging on both sides where the anon_vma of the
VMA being merged maybe compatible with prev and next, but prev and next's
anon_vma's may not be compatible with each other.
Finally also introduce can_vma_merge_left() / can_vma_merge_right() to
check adjacent VMA compatibility and that they are indeed adjacent.
Link: https://lkml.kernel.org/r/49d37c0769b6b9dc03b27fe4d059173832556392.1725040657.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Bert Karwatzki <spasswolf@web.de>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Both can_vma_merge_before() and can_vma_merge_after() are invoked after
checking for compatible VMA NUMA policy, we can simply move this to
is_mergeable_vma() and abstract this altogether.
In mmap_region() we set vmg->policy to NULL, so the policy comparisons
checked in can_vma_merge_before() and can_vma_merge_after() are exactly
equivalent to !vma_policy(vmg.next) and !vma_policy(vmg.prev).
Equally, in do_brk_flags(), vmg->policy is NULL, so the
can_vma_merge_after() is checking !vma_policy(vma), as we set vmg.prev to
vma.
In vma_merge(), we compare prev and next policies with vmg->policy before
checking can_vma_merge_after() and can_vma_merge_before() respectively,
which this patch causes to be checked in precisely the same way.
This therefore maintains precisely the same logic as before, only now
abstracted into is_mergeable_vma().
Link: https://lkml.kernel.org/r/0dbff286d9c4988333bc6f4ff3734cb95dd5410a.1725040657.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Bert Karwatzki <spasswolf@web.de>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rather than passing around huge numbers of parameters to numerous helper
functions, abstract them into a single struct that we thread through the
operation, the vma_merge_struct ('vmg').
Adjust vma_merge() and vma_modify() to accept this parameter, as well as
predicate functions can_vma_merge_before(), can_vma_merge_after(), and the
vma_modify_...() helper functions.
Also introduce VMG_STATE() and VMG_VMA_STATE() helper macros to allow for
easy vmg declaration.
We additionally remove the requirement that vma_merge() is passed a VMA
object representing the candidate new VMA. Previously it used this to
obtain the mm_struct, file and anon_vma properties of the proposed range
(a rather confusing state of affairs), which are now provided by the vmg
directly.
We also remove the pgoff calculation previously performed vma_modify(),
and instead calculate this in VMG_VMA_STATE() via the vma_pgoff_offset()
helper.
Link: https://lkml.kernel.org/r/a955aad09d81329f6fbeb636b2dd10cde7b73dab.1725040657.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Bert Karwatzki <spasswolf@web.de>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>