With legacy PM, drivers themselves were responsible for managing the
device's power states and takes care of register states.
After upgrading to the generic structure, PCI core will take care of
required tasks and drivers should do only device-specific operations.
The driver was invoking PCI helper functions like pci_save/restore_state(),
and pci_enable/disable_device(), which is not recommended.
Compile-tested only.
Signed-off-by: Vaibhav Gupta <vaibhavgupta40@gmail.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
With legacy PM hooks, it was the responsibility of a driver to manage PCI
states and also the device's power state. The generic approach is to let
PCI core handle the work.
ixgbe_suspend() calls __ixgbe_shutdown() to perform intermediate tasks.
__ixgbe_shutdown() modifies the value of "wake" (device should be wakeup
enabled or not), responsible for controlling the flow of legacy PM.
Since, PCI core has no idea about the value of "wake", new code for generic
PM may produce unexpected results. Thus, use "device_set_wakeup_enable()"
to wakeup-enable the device accordingly.
Compile-tested only.
Signed-off-by: Vaibhav Gupta <vaibhavgupta40@gmail.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
On ICX platform, the C1E auto-promotion is enabled by default.
As a result, the CPU might fall into C1E more offen than previous
platforms. Besides, the C1E is not exposed to sysfs on ICX, which
is inconsistent with previous server platforms.
So disable C1E auto-promotion and expose C1E as a separate idle
state, so the C1E and C6 can be disabled via sysfs when necessary.
Beside C1 and C1E, the exit latency of C6 was measured
by a dedicated tool. However the exit latency(41us) exposed
by _CST is much smaller than the one we measured(128us). This
is probably due to the _CST uses the exit latency when woken
up from PC0+C6, rather than PC6+C6 when C6 was measured. Choose
the latter as we need the longest latency in theory.
Reported-by: kernel test robot <lkp@intel.com>
Tested-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Acked-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Reviewed-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove legacy PM callbacks and use generic operations. With legacy code,
drivers were responsible for handling PCI PM operations like
pci_save_state(). In generic code, all these are handled by PCI core.
The generic suspend() and resume() are called at the same point the legacy
ones were called. Thus, it does not affect the normal functioning of the
driver.
__maybe_unused attribute is used with .resume() but not with .suspend(), as
.suspend() is called by .shutdown().
Compile-tested only.
Signed-off-by: Vaibhav Gupta <vaibhavgupta40@gmail.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
With the support of generic PM callbacks, drivers no longer need to use
legacy .suspend() and .resume() in which they had to maintain PCI states
changes and device's power state themselves. The required operations are
done by PCI core.
PCI drivers are not expected to invoke PCI helper functions like
pci_save/restore_state(), pci_enable/disable_device(),
pci_set_power_state(), etc. Their tasks are completed by PCI core itself.
Compile-tested only.
Signed-off-by: Vaibhav Gupta <vaibhavgupta40@gmail.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
If the guest generates a synchronous external abort which is not handled
by the host, we inject it back into the guest as a virtual SError, but
only if the original fault was reported on the data side. Instruction
faults are reported as "Unsupported FSC", causing the vCPU run loop to
bail with -EFAULT.
Although synchronous external aborts from a guest are pretty unusual,
treat them the same regardless of whether they are taken as data or
instruction aborts by EL2.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20200729102821.23392-3-will@kernel.org
This patch fixes a race condition that causes a use-after-free during
amdgpu_dm_atomic_commit_tail. This can occur when 2 non-blocking commits
are requested and the second one finishes before the first. Essentially,
this bug occurs when the following sequence of events happens:
1. Non-blocking commit #1 is requested w/ a new dm_state #1 and is
deferred to the workqueue.
2. Non-blocking commit #2 is requested w/ a new dm_state #2 and is
deferred to the workqueue.
3. Commit #2 starts before commit #1, dm_state #1 is used in the
commit_tail and commit #2 completes, freeing dm_state #1.
4. Commit #1 starts after commit #2 completes, uses the freed dm_state
1 and dereferences a freelist pointer while setting the context.
Since this bug has only been spotted with fast commits, this patch fixes
the bug by clearing the dm_state instead of using the old dc_state for
fast updates. In addition, since dm_state is only used for its dc_state
and amdgpu_dm_atomic_commit_tail will retain the dc_state if none is found,
removing the dm_state should not have any consequences in fast updates.
This use-after-free bug has existed for a while now, but only caused a
noticeable issue starting from 5.7-rc1 due to 3202fa62f ("slub: relocate
freelist pointer to middle of object") moving the freelist pointer from
dm_state->base (which was unused) to dm_state->context (which is
dereferenced).
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=207383
Fixes: bd200d190f ("drm/amd/display: Don't replace the dc_state for fast updates")
Reported-by: Duncan <1i5t5.duncan@cox.net>
Signed-off-by: Mazin Rezk <mnrzk@protonmail.com>
Reviewed-by: Nicholas Kazlauskas <nicholas.kazlauskas@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Cc: stable@vger.kernel.org
Compiler leaves a 4-byte hole near the end of `dev_info`, causing
amdgpu_info_ioctl() to copy uninitialized kernel stack memory to userspace
when `size` is greater than 356.
In 2015 we tried to fix this issue by doing `= {};` on `dev_info`, which
unfortunately does not initialize that 4-byte hole. Fix it by using
memset() instead.
Cc: stable@vger.kernel.org
Fixes: c193fa91b9 ("drm/amdgpu: information leak in amdgpu_info_ioctl()")
Fixes: d38ceaf99e ("drm/amdgpu: add core driver (v4)")
Suggested-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Peilin Ye <yepeilin.cs@gmail.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Commit c726200dd1 ("KVM: arm/arm64: Allow reporting non-ISV data aborts
to userspace") introduced a mechanism to deflect MMIO traffic the kernel
can not handle to user space. For that, it introduced a new exit reason.
However, it did not update the trace point array that gives human readable
names to these exit reasons inside the trace log.
Let's fix that up after the fact, so that trace logs are pretty even when
we get user space MMIO traps on ARM.
Fixes: c726200dd1 ("KVM: arm/arm64: Allow reporting non-ISV data aborts to userspace")
Signed-off-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200730094441.18231-1-graf@amazon.com
Some compilers may put a subset of generated functions into '.text.*'
ELF sections and the linker may leverage this division to optimize ELF
layout. Unfortunately, the recently introduced HYPCOPY command assumes
that all executable code (with the exception of specialized sections
such as '.hyp.idmap.text') is in the '.text' section. If this
assumption is broken, code in '.text.*' will be merged into kernel
proper '.text' instead of the '.hyp.text' that is mapped in EL2.
To ensure that this cannot happen, insert an OBJDUMP assertion into
HYPCOPY. The command dumps a list of ELF sections in the input object
file and greps for '.text.'. If found, compilation fails. Tested with
both binutils' and LLVM's objdump (the output format is different).
GCC offers '-fno-reorder-functions' to disable this behaviour. Select
the flag if it is available. From inspection of GCC source (latest
Git in July 2020), this flag does force all code into '.text'.
By default, GCC uses profile data, heuristics and attributes to select
a subsection.
LLVM/Clang currently does not have a similar optimization pass. It can
place static constructors into '.text.startup' and it's optimizer can
be provided with profile data to reorder hot/cold functions. Neither
of these is applicable to nVHE hyp code. If this changes in the future,
the OBJDUMP assertion should alert users to the problem.
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200730132519.48787-1-dbrazdil@google.com
We are currently assuming that CEDE(0) has exit latency 10us, since
there is no way for us to query from the platform. However, if the
wakeup latency of an Extended CEDE state is smaller than 10us, then we
can be sure that the exit latency of CEDE(0) cannot be more than that.
In this patch, we fix the exit latency of CEDE(0) if we discover an
Extended CEDE state with wakeup latency smaller than 10us.
Benchmark results:
On POWER8, this patch does not have any impact since the advertized
latency of Extended CEDE (1) is 30us which is higher than the default
latency of CEDE (0) which is 10us.
On POWER9 we see improvement the single-threaded performance of
ebizzy, and no regression in the wakeup latency or the number of
context-switches.
ebizzy:
2 ebizzy threads bound to the same big-core. 25% improvement in the
avg records/s with patch.
x without_patch
* with_patch
N Min Max Median Avg Stddev
x 10 2491089 5834307 5398375 4244335 1596244.9
* 10 2893813 5834474 5832448 5327281.3 1055941.4
context_switch2:
There is no major regression observed with this patch as seen from the
context_switch2 benchmark.
context_switch2 across CPU0 CPU1 (Both belong to same big-core, but
different small cores). We observe a minor 0.14% regression in the
number of context-switches (higher is better).
x without_patch
* with_patch
N Min Max Median Avg Stddev
x 500 348872 362236 354712 354745.69 2711.827
* 500 349422 361452 353942 354215.4 2576.9258
Difference at 99.0% confidence
-530.288 +/- 430.963
-0.149484% +/- 0.121485%
(Student's t, pooled s = 2645.24)
context_switch2 across CPU0 CPU8 (Different big-cores). We observe a
0.37% improvement in the number of context-switches (higher is
better).
x without_patch
* with_patch
N Min Max Median Avg Stddev
x 500 287956 294940 288896 288977.23 646.59295
* 500 288300 294646 289582 290064.76 1161.9992
Difference at 99.0% confidence
1087.53 +/- 153.194
0.376337% +/- 0.0530125%
(Student's t, pooled s = 940.299)
schbench:
No major difference could be seen until the 99.9th percentile.
Without-patch:
Latency percentiles (usec)
50.0th: 29
75.0th: 39
90.0th: 49
95.0th: 59
*99.0th: 13104
99.5th: 14672
99.9th: 15824
min=0, max=17993
With-patch:
Latency percentiles (usec)
50.0th: 29
75.0th: 40
90.0th: 50
95.0th: 61
*99.0th: 13648
99.5th: 14768
99.9th: 15664
min=0, max=29812
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
[mpe: Minor formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1596087177-30329-4-git-send-email-ego@linux.vnet.ibm.com
Currently we use CEDE with latency-hint 0 as the only other idle state
on a dedicated LPAR apart from the polling "snooze" state.
The platform might support additional extended CEDE idle states, which
can be discovered through the "ibm,get-system-parameter" rtas-call
made with CEDE_LATENCY_TOKEN.
This patch adds a function to obtain information about the extended
CEDE idle states from the platform and parse the contents to populate
an array of extended CEDE states. These idle states thus discovered
will be added to the cpuidle framework in the next patch.
dmesg on a POWER8 and POWER9 LPAR, demonstrating the output of parsing
the extended CEDE latency parameters are as follows
POWER8
[ 10.093279] xcede : xcede_record_size = 10
[ 10.093285] xcede : Record 0 : hint = 1, latency = 0x3c00 tb ticks, Wake-on-irq = 1
[ 10.093291] xcede : Record 1 : hint = 2, latency = 0x4e2000 tb ticks, Wake-on-irq = 0
[ 10.093297] cpuidle : Skipping the 2 Extended CEDE idle states
POWER9
[ 5.913180] xcede : xcede_record_size = 10
[ 5.913183] xcede : Record 0 : hint = 1, latency = 0x400 tb ticks, Wake-on-irq = 1
[ 5.913188] xcede : Record 1 : hint = 2, latency = 0x3e8000 tb ticks, Wake-on-irq = 0
[ 5.913193] cpuidle : Skipping the 2 Extended CEDE idle states
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
[mpe: Make space for 16 records, drop memset, minor cleanup & formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1596087177-30329-3-git-send-email-ego@linux.vnet.ibm.com
As per the PAPR, each H_CEDE call is associated with a latency-hint to
be passed in the VPA field "cede_latency_hint". The CEDE states that
we were implicitly entering so far is CEDE with latency-hint = 0.
This patch explicitly sets the latency hint corresponding to the CEDE
state that we are currently entering. While at it, we save the
previous hint, to be restored once we wakeup from CEDE. This will be
required in the future when we expose extended-cede states through the
cpuidle framework, where each of them will have a different
cede-latency hint.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
[mpe: Make cede_latency_hint static]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1596087177-30329-2-git-send-email-ego@linux.vnet.ibm.com
In the unlikely event that the device tree lacks a /cpus node,
find_dlpar_cpus_to_add() oddly frees the cpu_drcs buffer it has been
passed before returning an error. Its only caller also frees the
buffer on error.
Remove the less conventional kfree() of a caller-supplied buffer from
find_dlpar_cpus_to_add().
Fixes: 90edf184b9 ("powerpc/pseries: Add CPU dlpar add functionality")
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190919231633.1344-1-nathanl@linux.ibm.com
When investigating issues with partition migration or resource
reassignments it is helpful to have a log of which nodes and
properties in the device tree have changed. Use pr_debug() so it's
easy to enable these at runtime with the dynamic debug facility.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190627053044.9238-3-nathanl@linux.ibm.com
If we have a bug which causes us to start with the wrong kind of OF
node when linking up the cache tree, it's helpful for debugging to
print information about what we found vs what we expected. So replace
uses of WARN_ON_ONCE with WARN_ONCE, which lets us include an
informative message instead of a contentless backtrace.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190627051537.7298-4-nathanl@linux.ibm.com
We know that every OF node we deal with in this code is under /cpus,
so we can make the debug messages a little less verbose without losing
information.
E.g.
cacheinfo: creating L1 dcache and icache for /cpus/PowerPC,POWER8@0
cacheinfo: creating L2 ucache for /cpus/l2-cache@2006
cacheinfo: creating L3 ucache for /cpus/l3-cache@3106
becomes
cacheinfo: creating L1 dcache and icache for PowerPC,POWER8@0
cacheinfo: creating L2 ucache for l2-cache@2006
cacheinfo: creating L3 ucache for l3-cache@3106
Replace all '%pOF' specifiers with '%pOFP'.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190627051537.7298-3-nathanl@linux.ibm.com
On arm64, smp_processor_id() reads a per-cpu `cpu_number` variable,
using the per-cpu offset stored in the tpidr_el1 system register. In
some cases we generate a per-cpu address with a sequence like:
cpu_ptr = &per_cpu(ptr, smp_processor_id());
Which potentially incurs a cache miss for both `cpu_number` and the
in-memory `__per_cpu_offset` array. This can be written more optimally
as:
cpu_ptr = this_cpu_ptr(ptr);
Which only needs the offset from tpidr_el1, and does not need to
load from memory.
The following two test cases show a small performance improvement measured
on a 46-cpus qualcomm machine with 5.8.0-rc4 kernel.
Test 1: (about 0.3% improvement)
#cat b.sh
make clean && make all -j138
#perf stat --repeat 10 --null --sync sh b.sh
- before this patch
Performance counter stats for 'sh b.sh' (10 runs):
298.62 +- 1.86 seconds time elapsed ( +- 0.62% )
- after this patch
Performance counter stats for 'sh b.sh' (10 runs):
297.734 +- 0.954 seconds time elapsed ( +- 0.32% )
Test 2: (about 1.69% improvement)
'perf stat -r 10 perf bench sched messaging'
Then sum the total time of 'sched/messaging' by manual.
- before this patch
total 0.707 sec for 10 times
- after this patch
totol 0.695 sec for 10 times
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Jean-Philippe Brucker <jean-philippe@linaro.org>
Link: https://lore.kernel.org/r/1594389852-19949-1-git-send-email-kernelfans@gmail.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The comments explicitely explain that the work flags check and handling in
kvm_run_vcpu() is done with preemption and interrupts enabled as KVM
invokes the check again right before entering guest mode with interrupts
disabled which guarantees that the work flags are observed and handled
before VMENTER.
Nevertheless the flag pending check in kvm_run_vcpu() uses the helper
variant which requires interrupts to be disabled triggering an instant
lockdep splat. This was caught in testing before and then not fixed up in
the patch before applying. :(
Use the relaxed and intentionally racy __xfer_to_guest_mode_work_pending()
instead.
Fixes: 72c3c0fe54 ("x86/kvm: Use generic xfer to guest work function")
Reported-by: Qian Cai <cai@lca.pw> writes:
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/87bljxa2sa.fsf@nanos.tec.linutronix.de