A bug was discovered where the idle shadow stacks were not initialized
for offline CPUs when starting function graph tracer, and when they came
online they were not traced due to the missing shadow stack. To fix
this, the idle task shadow stack initialization was moved to using the
CPU hotplug callbacks. But it removed the initialization when the
function graph was enabled. The problem here is that the hotplug
callbacks are called when the CPUs come online, but the idle shadow
stack initialization only happens if function graph is currently
active. This caused the online CPUs to not get their shadow stack
initialized.
The idle shadow stack initialization still needs to be done when the
function graph is registered, as they will not be allocated if function
graph is not registered.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241211135335.094ba282@batman.local.home
Fixes: 2c02f7375e ("fgraph: Use CPU hotplug mechanism to initialize idle shadow stacks")
Reported-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Closes: https://lore.kernel.org/all/CACRpkdaTBrHwRbbrphVy-=SeDz6MSsXhTKypOtLrTQ+DgGAOcQ@mail.gmail.com/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ret_stack (shadow stack used by function graph infrastructure) is
created for every task on the system when function graph is enabled. Give
it its own kmem_cache. This will make it easier to see how much memory is
being used specifically for function graph shadow stacks.
In the future, this size may change and may not be a power of two. Having
its own cache can also keep it from fragmenting memory.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/20241026063210.7d4910a7@rorschach.local.home
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In order to modify the code that allocates the shadow stacks, merge the
changes that fixed the CPU hotplug shadow stack allocations and build on
top of that.
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ret_stack_list is an array of ret_stack shadow stacks for the function
graph usage. When the first function graph is enabled, all tasks in the
system get a shadow stack. The ret_stack_list is a 32 element array of
pointers to these shadow stacks. It allocates the shadow stack in batches
(32 stacks at a time), assigns them to running tasks, and continues until
all tasks are covered.
When the function graph shadow stack changed from an array of
ftrace_ret_stack structures to an array of longs, the allocation of
ret_stack_list went from allocating an array of 32 elements to just a
block defined by SHADOW_STACK_SIZE. Luckily, that's defined as PAGE_SIZE
and is much more than enough to hold 32 pointers. But it is way overkill
for the amount needed to allocate.
Change the allocation of ret_stack_list back to a kcalloc() of
FTRACE_RETSTACK_ALLOC_SIZE pointers.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241018215212.23f13f40@rorschach
Fixes: 42675b723b ("function_graph: Convert ret_stack to a series of longs")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The function graph infrastructure allocates a shadow stack for every task
when enabled. This includes the idle tasks. The first time the function
graph is invoked, the shadow stacks are created and never freed until the
task exits. This includes the idle tasks.
Only the idle tasks that were for online CPUs had their shadow stacks
created when function graph tracing started. If function graph tracing is
enabled and a CPU comes online, the idle task representing that CPU will
not have its shadow stack created, and all function graph tracing for that
idle task will be silently dropped.
Instead, use the CPU hotplug mechanism to allocate the idle shadow stacks.
This will include idle tasks for CPUs that come online during tracing.
This issue can be reproduced by:
# cd /sys/kernel/tracing
# echo 0 > /sys/devices/system/cpu/cpu1/online
# echo 0 > set_ftrace_pid
# echo function_graph > current_tracer
# echo 1 > options/funcgraph-proc
# echo 1 > /sys/devices/system/cpu/cpu1
# grep '<idle>' per_cpu/cpu1/trace | head
Before, nothing would show up.
After:
1) <idle>-0 | 0.811 us | __enqueue_entity();
1) <idle>-0 | 5.626 us | } /* enqueue_entity */
1) <idle>-0 | | dl_server_update_idle_time() {
1) <idle>-0 | | dl_scaled_delta_exec() {
1) <idle>-0 | 0.450 us | arch_scale_cpu_capacity();
1) <idle>-0 | 1.242 us | }
1) <idle>-0 | 1.908 us | }
1) <idle>-0 | | dl_server_start() {
1) <idle>-0 | | enqueue_dl_entity() {
1) <idle>-0 | | task_contending() {
Note, if tracing stops and restarts, the old way would then initialize
the onlined CPUs.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/20241018214300.6df82178@rorschach
Fixes: 868baf07b1 ("ftrace: Fix memory leak with function graph and cpu hotplug")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When using function_graph tracer to analyze the flow of kernel function
execution, it is often necessary to quickly locate the exact line of code
where the call occurs. While this may be easy at times, it can be more
time-consuming when some functions are inlined or the flow is too long.
This feature aims to simplify the process by recording the return address
of traced funcions and printing it when outputing trace logs.
To enhance human readability, the prefix 'ret=' is used for the kernel return
value, while '<-' serves as the prefix for the return address in trace logs to
make it look more like the function tracer.
A new trace option named 'funcgraph-retaddr' has been introduced, and the
existing option 'sym-addr' can be used to control the format of the return
address.
See below logs with both funcgraph-retval and funcgraph-retaddr enabled.
0) | load_elf_binary() { /* <-bprm_execve+0x249/0x600 */
0) | load_elf_phdrs() { /* <-load_elf_binary+0x84/0x1730 */
0) | __kmalloc_noprof() { /* <-load_elf_phdrs+0x4a/0xb0 */
0) 3.657 us | __cond_resched(); /* <-__kmalloc_noprof+0x28c/0x390 ret=0x0 */
0) + 24.335 us | } /* __kmalloc_noprof ret=0xffff8882007f3000 */
0) | kernel_read() { /* <-load_elf_phdrs+0x6c/0xb0 */
0) | rw_verify_area() { /* <-kernel_read+0x2b/0x50 */
0) | security_file_permission() { /* <-kernel_read+0x2b/0x50 */
0) | selinux_file_permission() { /* <-security_file_permission+0x26/0x40 */
0) | __inode_security_revalidate() { /* <-selinux_file_permission+0x6d/0x140 */
0) 2.034 us | __cond_resched(); /* <-__inode_security_revalidate+0x5f/0x80 ret=0x0 */
0) 6.602 us | } /* __inode_security_revalidate ret=0x0 */
0) 2.214 us | avc_policy_seqno(); /* <-selinux_file_permission+0x107/0x140 ret=0x0 */
0) + 16.670 us | } /* selinux_file_permission ret=0x0 */
0) + 20.809 us | } /* security_file_permission ret=0x0 */
0) + 25.217 us | } /* rw_verify_area ret=0x0 */
0) | __kernel_read() { /* <-load_elf_phdrs+0x6c/0xb0 */
0) | ext4_file_read_iter() { /* <-__kernel_read+0x160/0x2e0 */
Then, we can use the faddr2line to locate the source code, for example:
$ ./scripts/faddr2line ./vmlinux load_elf_phdrs+0x6c/0xb0
load_elf_phdrs+0x6c/0xb0:
elf_read at fs/binfmt_elf.c:471
(inlined by) load_elf_phdrs at fs/binfmt_elf.c:531
Link: https://lore.kernel.org/20240915032912.1118397-1-dolinux.peng@gmail.com
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202409150605.HgUmU8ea-lkp@intel.com/
Signed-off-by: Donglin Peng <dolinux.peng@gmail.com>
[ Rebased to handle text_delta offsets ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The calltime field in the shadow stack frame is only used by the function
graph tracer and profiler. But now that there's other users of the function
graph infrastructure, this adds overhead and wastes space on the shadow
stack. Move the calltime to the fgraph data storage, where the function
graph and profiler entry functions will save it in its own graph storage and
retrieve it in its exit functions.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Link: https://lore.kernel.org/20240914214827.096968730@goodmis.org
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The fgraph "sleep-time" option tells the function graph tracer and the
profiler whether to include the time a function "sleeps" (is scheduled off
the CPU) in its duration for the function. By default it is true, which
means the duration of a function is calculated by the timestamp of when the
function was entered to the timestamp of when it exits.
If the "sleep-time" option is disabled, it needs to remove the time that the
task was not running on the CPU during the function. Currently it is done in
a sched_switch tracepoint probe where it moves the "calltime" (time of entry
of the function) forward by the sleep time calculated. It updates all the
calltime in the shadow stack.
This is time consuming for those users of the function graph tracer that
does not care about the sleep time. Instead, add a "ftrace_sleeptime" to the
task_struct that gets the sleep time added each time the task wakes up. Then
have the function entry save the current "ftrace_sleeptime" and on function
exit, move the calltime forward by the difference of the current
"ftrace_sleeptime" from the saved sleeptime.
This removes one dependency of "calltime" needed to be on the shadow stack.
It also simplifies the code that removes the sleep time of functions.
TODO: Only enable the sched_switch tracepoint when this is needed.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Link: https://lore.kernel.org/20240914214826.938908568@goodmis.org
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Since the register_ftrace_graph() assigns a new fgraph_ops to
fgraph_array before registring it by ftrace_startup_subops(), the new
fgraph_ops can be used in function_graph_enter().
In most cases, it is still OK because those fgraph_ops's hashtable is
already initialized by ftrace_set_filter*() etc.
But if a user registers a new fgraph_ops which does not initialize the
hash list, ftrace_ops_test() in function_graph_enter() causes a NULL
pointer dereference BUG because fgraph_ops->ops.func_hash is NULL.
This can be reproduced by the below commands because function profiler's
fgraph_ops does not initialize the hash list;
# cd /sys/kernel/tracing
# echo function_graph > current_tracer
# echo 1 > function_profile_enabled
To fix this problem, add a new fgraph_ops to fgraph_array after
ftrace_startup_subops(). Thus, until the new fgraph_ops is initialized,
we will see fgraph_stub on the corresponding fgraph_array entry.
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Guo Ren <guoren@kernel.org>
Link: https://lore.kernel.org/172398528350.293426.8347220120333730248.stgit@devnote2
Fixes: c132be2c4f ("function_graph: Have the instances use their own ftrace_ops for filtering")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In function_graph_enter() there's a loop that looks at fgraph_array[]
elements which are fgraph_ops. It first tests if it is a fgraph_stub op,
and if so skips it, as that's just there as a place holder. Then it checks
the fgraph_ops filters to see if the ops wants to trace the current
function.
But if the compiler reloads the fgraph_array[] after the check against
fgraph_stub, it could race with the fgraph_array[] being updated with the
fgraph_stub. That would cause the stub to be processed. But the stub has a
null "func_hash" field which will cause a NULL pointer dereference.
Add a READ_ONCE() so that the gops that is compared against the
fgraph_stub is also the gops that is processed later.
Link: https://lore.kernel.org/all/CA+G9fYsSVJQZH=nM=1cjTc94PgSnMF9y65BnOv6XSoCG_b6wmw@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240613095223.1f07e3a4@rorschach.local.home
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: cc60ee813b ("function_graph: Use static_call and branch to optimize entry function")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
There are cases where a single system will use a single function callback
to handle multiple users. For example, to allow function_graph tracer to
have multiple users where each can trace their own set of functions, it is
useful to only have one ftrace_ops registered to ftrace that will call a
function by the function_graph tracer to handle the multiplexing with the
different registered function_graph tracers.
Add a "subop_list" to the ftrace_ops that will hold a list of other
ftrace_ops that the top ftrace_ops will manage.
The function ftrace_startup_subops() that takes the manager ftrace_ops and
a subop ftrace_ops it will manage. If there are no subops with the
ftrace_ops yet, it will copy the ftrace_ops subop filters to the manager
ftrace_ops and register that with ftrace_startup(), and adds the subop to
its subop_list. If the manager ops already has something registered, it
will then merge the new subop filters with what it has and enable the new
functions that covers all the subops it has.
To remove a subop, ftrace_shutdown_subops() is called which will use the
subop_list of the manager ops to rebuild all the functions it needs to
trace, and update the ftrace records to only call the functions it now has
registered. If there are no more functions registered, it will then call
ftrace_shutdown() to disable itself completely.
Note, it is up to the manager ops callback to always make sure that the
subops callbacks are called if its filter matches, as there are times in
the update where the callback could be calling more functions than those
that are currently registered.
This could be updated to handle other systems other than function_graph,
for example, fprobes could use this (but will need an interface to call
ftrace_startup_subops()).
Link: https://lore.kernel.org/linux-trace-kernel/20240603190822.508431129@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Guo Ren <guoren@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Allow for multiple users to attach to function graph tracer at the same
time. Only 16 simultaneous users can attach to the tracer. This is because
there's an array that stores the pointers to the attached fgraph_ops. When
a function being traced is entered, each of the ftrace_ops entryfunc is
called and if it returns non zero, its index into the array will be added
to the shadow stack.
On exit of the function being traced, the shadow stack will contain the
indexes of the ftrace_ops on the array that want their retfunc to be
called.
Because a function may sleep for a long time (if a task sleeps itself),
the return of the function may be literally days later. If the ftrace_ops
is removed, its place on the array is replaced with a ftrace_ops that
contains the stub functions and that will be called when the function
finally returns.
If another ftrace_ops is added that happens to get the same index into the
array, its return function may be called. But that's actually the way
things current work with the old function graph tracer. If one tracer is
removed and another is added, the new one will get the return calls of the
function traced by the previous one, thus this is not a regression. This
can be fixed by adding a counter to each time the array item is updated and
save that on the shadow stack as well, such that it won't be called if the
index saved does not match the index on the array.
Note, being able to filter functions when both are called is not completely
handled yet, but that shouldn't be too hard to manage.
Co-developed with Masami Hiramatsu:
Link: https://lore.kernel.org/linux-trace-kernel/171509096221.162236.8806372072523195752.stgit@devnote2
Link: https://lore.kernel.org/linux-trace-kernel/20240603190821.555493396@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Guo Ren <guoren@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
These are all tracing W=1 warnings in arm64 allmodconfig about missing
prototypes:
kernel/trace/trace_kprobe_selftest.c:7:5: error: no previous prototype for 'kprobe_trace_selftest_target' [-Werror=missing-pro
totypes]
kernel/trace/ftrace.c:329:5: error: no previous prototype for '__register_ftrace_function' [-Werror=missing-prototypes]
kernel/trace/ftrace.c:372:5: error: no previous prototype for '__unregister_ftrace_function' [-Werror=missing-prototypes]
kernel/trace/ftrace.c:4130:15: error: no previous prototype for 'arch_ftrace_match_adjust' [-Werror=missing-prototypes]
kernel/trace/fgraph.c:243:15: error: no previous prototype for 'ftrace_return_to_handler' [-Werror=missing-prototypes]
kernel/trace/fgraph.c:358:6: error: no previous prototype for 'ftrace_graph_sleep_time_control' [-Werror=missing-prototypes]
arch/arm64/kernel/ftrace.c:460:6: error: no previous prototype for 'prepare_ftrace_return' [-Werror=missing-prototypes]
arch/arm64/kernel/ptrace.c:2172:5: error: no previous prototype for 'syscall_trace_enter' [-Werror=missing-prototypes]
arch/arm64/kernel/ptrace.c:2195:6: error: no previous prototype for 'syscall_trace_exit' [-Werror=missing-prototypes]
Move the declarations to an appropriate header where they can be seen
by the caller and callee, and make sure the headers are included where
needed.
Link: https://lore.kernel.org/linux-trace-kernel/20230517125215.930689-1-arnd@kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Florent Revest <revest@chromium.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
[ Fixed ftrace_return_to_handler() to handle CONFIG_HAVE_FUNCTION_GRAPH_RETVAL case ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Analyzing system call failures with the function_graph tracer can be a
time-consuming process, particularly when locating the kernel function
that first returns an error in the trace logs. This change aims to
simplify the process by recording the function return value to the
'retval' member of 'ftrace_graph_ret' and printing it when outputting
the trace log.
We have introduced new trace options: funcgraph-retval and
funcgraph-retval-hex. The former controls whether to display the return
value, while the latter controls the display format.
Please note that even if a function's return type is void, a return
value will still be printed. You can simply ignore it.
This patch only establishes the fundamental infrastructure. Subsequent
patches will make this feature available on some commonly used processor
architectures.
Here is an example:
I attempted to attach the demo process to a cpu cgroup, but it failed:
echo `pidof demo` > /sys/fs/cgroup/cpu/test/tasks
-bash: echo: write error: Invalid argument
The strace logs indicate that the write system call returned -EINVAL(-22):
...
write(1, "273\n", 4) = -1 EINVAL (Invalid argument)
...
To capture trace logs during a write system call, use the following
commands:
cd /sys/kernel/debug/tracing/
echo 0 > tracing_on
echo > trace
echo *sys_write > set_graph_function
echo *spin* > set_graph_notrace
echo *rcu* >> set_graph_notrace
echo *alloc* >> set_graph_notrace
echo preempt* >> set_graph_notrace
echo kfree* >> set_graph_notrace
echo $$ > set_ftrace_pid
echo function_graph > current_tracer
echo 1 > options/funcgraph-retval
echo 0 > options/funcgraph-retval-hex
echo 1 > tracing_on
echo `pidof demo` > /sys/fs/cgroup/cpu/test/tasks
echo 0 > tracing_on
cat trace > ~/trace.log
To locate the root cause, search for error code -22 directly in the file
trace.log and identify the first function that returned -22. Once you
have identified this function, examine its code to determine the root
cause.
For example, in the trace log below, cpu_cgroup_can_attach
returned -22 first, so we can focus our analysis on this function to
identify the root cause.
...
1) | cgroup_migrate() {
1) 0.651 us | cgroup_migrate_add_task(); /* = 0xffff93fcfd346c00 */
1) | cgroup_migrate_execute() {
1) | cpu_cgroup_can_attach() {
1) | cgroup_taskset_first() {
1) 0.732 us | cgroup_taskset_next(); /* = 0xffff93fc8fb20000 */
1) 1.232 us | } /* cgroup_taskset_first = 0xffff93fc8fb20000 */
1) 0.380 us | sched_rt_can_attach(); /* = 0x0 */
1) 2.335 us | } /* cpu_cgroup_can_attach = -22 */
1) 4.369 us | } /* cgroup_migrate_execute = -22 */
1) 7.143 us | } /* cgroup_migrate = -22 */
...
Link: https://lkml.kernel.org/r/1fc502712c981e0e6742185ba242992170ac9da8.1680954589.git.pengdonglin@sangfor.com.cn
Tested-by: Florian Kauer <florian.kauer@linutronix.de>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Donglin Peng <pengdonglin@sangfor.com.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In final testing of:
1fc502712c.1680954589.git.pengdonglin@sangfor.com.cn/
"function_graph: Support recording and printing the return value of function"
The test failed due to a new warning found in the build:
kernel/trace/fgraph.c:243:56: warning: ‘struct fgraph_ret_regs’ declared inside parameter list will not be visible outside of this definition or declaration
Instead of asking to send another patch series, just add it and then apply
the updates.
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Pull arm64 fixes from Catalin Marinas:
"Most of issues addressed were introduced during this merging window.
- Initialise jump labels before setup_machine_fdt(), needed by commit
f5bda35fba ("random: use static branch for crng_ready()").
- Sparse warnings: missing prototype, incorrect __user annotation.
- Skip SVE kselftest if not sufficient vector lengths supported"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
kselftest/arm64: signal: Skip SVE signal test if not enough VLs supported
arm64: Initialize jump labels before setup_machine_fdt()
arm64: hibernate: Fix syntax errors in comments
arm64: Remove the __user annotation for the restore_za_context() argument
ftrace/fgraph: fix increased missing-prototypes warnings
After commit e999995c84 ("ftrace: cleanup ftrace_graph_caller enable
and disable") merged into the linux-next tree, the kernel test robot
(lkp@intel.com) has send out report that there are increased missing-prototypes
warnings caused by that commit.
COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-11.3.0 make.cross W=1 \
O=build_dir ARCH=sh SHELL=/bin/bash kernel/trace/
warning: no previous prototype for 'ftrace_enable_ftrace_graph_caller' [-Wmissing-prototypes]
warning: no previous prototype for 'ftrace_disable_ftrace_graph_caller' [-Wmissing-prototypes]
warning: no previous prototype for 'ftrace_return_to_handler' [-Wmissing-prototypes]
warning: no previous prototype for 'ftrace_graph_sleep_time_control' [-Wmissing-prototypes]
BTW there are so many missing-prototypes warnings if build kernel with "W=1".
The increased warnings for 'ftrace_[enable,disable]_ftrace_graph_caller'
is caused by CONFIG_FUNCTION_GRAPH_TRACER && !CONFIG_DYNAMIC_FTRACE,
so the declarations in <linux/ftrace.h> can't be seen in fgraph.c.
And this warning can't reproduce on x86_64 since x86_64 select
HAVE_FUNCTION_GRAPH_TRACER only when DYNAMIC_FTRACE, so fgraph.c will
always see the declarations in <linux/ftrace.h>.
This patch fix the increased warnings by put the definitions in
CONFIG_DYNAMIC_FTRACE although there are no real problems exist.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20220506032737.23375-1-zhouchengming@bytedance.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull arm64 updates from Catalin Marinas:
- Initial support for the ARMv9 Scalable Matrix Extension (SME).
SME takes the approach used for vectors in SVE and extends this to
provide architectural support for matrix operations. No KVM support
yet, SME is disabled in guests.
- Support for crashkernel reservations above ZONE_DMA via the
'crashkernel=X,high' command line option.
- btrfs search_ioctl() fix for live-lock with sub-page faults.
- arm64 perf updates: support for the Hisilicon "CPA" PMU for
monitoring coherent I/O traffic, support for Arm's CMN-650 and
CMN-700 interconnect PMUs, minor driver fixes, kerneldoc cleanup.
- Kselftest updates for SME, BTI, MTE.
- Automatic generation of the system register macros from a 'sysreg'
file describing the register bitfields.
- Update the type of the function argument holding the ESR_ELx register
value to unsigned long to match the architecture register size
(originally 32-bit but extended since ARMv8.0).
- stacktrace cleanups.
- ftrace cleanups.
- Miscellaneous updates, most notably: arm64-specific huge_ptep_get(),
avoid executable mappings in kexec/hibernate code, drop TLB flushing
from get_clear_flush() (and rename it to get_clear_contig()),
ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (145 commits)
arm64/sysreg: Generate definitions for FAR_ELx
arm64/sysreg: Generate definitions for DACR32_EL2
arm64/sysreg: Generate definitions for CSSELR_EL1
arm64/sysreg: Generate definitions for CPACR_ELx
arm64/sysreg: Generate definitions for CONTEXTIDR_ELx
arm64/sysreg: Generate definitions for CLIDR_EL1
arm64/sve: Move sve_free() into SVE code section
arm64: Kconfig.platforms: Add comments
arm64: Kconfig: Fix indentation and add comments
arm64: mm: avoid writable executable mappings in kexec/hibernate code
arm64: lds: move special code sections out of kernel exec segment
arm64/hugetlb: Implement arm64 specific huge_ptep_get()
arm64/hugetlb: Use ptep_get() to get the pte value of a huge page
arm64: kdump: Do not allocate crash low memory if not needed
arm64/sve: Generate ZCR definitions
arm64/sme: Generate defintions for SVCR
arm64/sme: Generate SMPRI_EL1 definitions
arm64/sme: Automatically generate SMPRIMAP_EL2 definitions
arm64/sme: Automatically generate SMIDR_EL1 defines
arm64/sme: Automatically generate defines for SMCR
...
Commit fa2c3254d7 (sched/tracing: Don't re-read p->state when emitting
sched_switch event, 2022-01-20) added a new prev_state argument to the
sched_switch tracepoint, before the prev task_struct pointer.
This reordering of arguments broke BPF programs that use the raw
tracepoint (e.g. tp_btf programs). The type of the second argument has
changed and existing programs that assume a task_struct* argument
(e.g. for bpf_task_storage access) will now fail to verify.
If we instead append the new argument to the end, all existing programs
would continue to work and can conditionally extract the prev_state
argument on supported kernel versions.
Fixes: fa2c3254d7 (sched/tracing: Don't re-read p->state when emitting sched_switch event, 2022-01-20)
Signed-off-by: Delyan Kratunov <delyank@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/c8a6930dfdd58a4a5755fc01732675472979732b.camel@fb.com