As of writing, Documentation/Changes states the minimal versions of GNU C
being 8.1, Clang being 15.0.0 and binutils being 2.30. A few Kconfig help
texts are pointing out that specific GCC and Clang versions are needed,
but by now, those pointers to versions, such later than 4.0, later than
4.4, or clang later than 5.0, are obsolete and unlikely to be found by
users configuring their kernel builds anyway.
Drop these outdated remarks in Kconfig help texts referring to older
compiler and binutils versions. No functional change.
Link: https://lkml.kernel.org/r/20251010082138.185752-1-lukas.bulwahn@redhat.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@redhat.com>
Cc: Bill Wendling <morbo@google.com>
Cc: Justin Stitt <justinstitt@google.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Russel King <linux@armlinux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are two different ways that LLVM can expand kCFI operand bundles
in LLVM IR: generically in the middle end or using an architecture
specific sequence when lowering LLVM IR to machine code in the backend.
The generic pass allows any architecture to take advantage of kCFI but
the expansion of these bundles in the middle end can mess with
optimizations that may turn indirect calls into direct calls when the
call target is known at compile time, such as after inlining.
Add __nocfi_generic, dependent on an architecture selecting
CONFIG_ARCH_USES_CFI_GENERIC_LLVM_PASS, to disable kCFI bundle
generation in functions where only the generic kCFI pass may cause
problems.
Link: https://github.com/ClangBuiltLinux/linux/issues/2124
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Link: https://patch.msgid.link/20251025-idpf-fix-arm-kcfi-build-error-v1-1-ec57221153ae@kernel.org
Signed-off-by: Kees Cook <kees@kernel.org>
The kernel uses the standard rustc targets for non-x86 targets, and out
of those only 64-bit arm's target has kcfi support enabled. For x86, the
custom 64-bit target enables kcfi.
The HAVE_CFI_ICALL_NORMALIZE_INTEGERS_RUSTC config option that allows
CFI_CLANG to be used in combination with RUST does not check whether the
rustc target supports kcfi. This breaks the build on riscv (and
presumably 32-bit arm) when CFI_CLANG and RUST are enabled at the same
time.
Ordinarily, a rustc-option check would be used to detect target support
but unfortunately rustc-option filters out the target for reasons given
in commit 46e24a545c ("rust: kasan/kbuild: fix missing flags on first
build"). As a result, if the host supports kcfi but the target does not,
e.g. when building for riscv on x86_64, the build would remain broken.
Instead, make HAVE_CFI_ICALL_NORMALIZE_INTEGERS_RUSTC depend on the only
two architectures where the target used supports it to fix the build.
CC: stable@vger.kernel.org
Fixes: ca627e6365 ("rust: cfi: add support for CFI_CLANG with Rust")
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Acked-by: Miguel Ojeda <ojeda@kernel.org>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20250908-distill-lint-1ae78bcf777c@spud
Signed-off-by: Paul Walmsley <pjw@kernel.org>
Pull Kbuild updates from Nathan Chancellor:
- Extend modules.builtin.modinfo to include module aliases from
MODULE_DEVICE_TABLE for builtin modules so that userspace tools (such
as kmod) can verify that a particular module alias will be handled by
a builtin module
- Bump the minimum version of LLVM for building the kernel to 15.0.0
- Upgrade several userspace API checks in headers_check.pl to errors
- Unify and consolidate CONFIG_WERROR / W=e handling
- Turn assembler and linker warnings into errors with CONFIG_WERROR /
W=e
- Respect CONFIG_WERROR / W=e when building userspace programs
(userprogs)
- Enable -Werror unconditionally when building host programs
(hostprogs)
- Support copy_file_range() and data segment alignment in gen_init_cpio
to improve performance on filesystems that support reflinks such as
btrfs and XFS
- Miscellaneous small changes to scripts and configuration files
* tag 'kbuild-6.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kbuild/linux: (47 commits)
modpost: Initialize builtin_modname to stop SIGSEGVs
Documentation: kbuild: note CONFIG_DEBUG_EFI in reproducible builds
kbuild: vmlinux.unstripped should always depend on .vmlinux.export.o
modpost: Create modalias for builtin modules
modpost: Add modname to mod_device_table alias
scsi: Always define blogic_pci_tbl structure
kbuild: extract modules.builtin.modinfo from vmlinux.unstripped
kbuild: keep .modinfo section in vmlinux.unstripped
kbuild: always create intermediate vmlinux.unstripped
s390: vmlinux.lds.S: Reorder sections
KMSAN: Remove tautological checks
objtool: Drop noinstr hack for KCSAN_WEAK_MEMORY
lib/Kconfig.debug: Drop CLANG_VERSION check from DEBUG_INFO_DWARF_TOOLCHAIN_DEFAULT
riscv: Remove ld.lld version checks from many TOOLCHAIN_HAS configs
riscv: Unconditionally use linker relaxation
riscv: Remove version check for LTO_CLANG selects
powerpc: Drop unnecessary initializations in __copy_inst_from_kernel_nofault()
mips: Unconditionally select ARCH_HAS_CURRENT_STACK_POINTER
arm64: Remove tautological LLVM Kconfig conditions
ARM: Clean up definition of ARM_HAS_GROUP_RELOCS
...
Pull VDSO updates from Thomas Gleixner:
- Further consolidation of the VDSO infrastructure and the common data
store
- Simplification of the related Kconfig logic
- Improve the VDSO selftest suite
* tag 'timers-vdso-2025-09-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
selftests: vDSO: Drop vdso_test_clock_getres
selftests: vDSO: vdso_test_abi: Add tests for clock_gettime64()
selftests: vDSO: vdso_test_abi: Test CPUTIME clocks
selftests: vDSO: vdso_test_abi: Use explicit indices for name array
selftests: vDSO: vdso_test_abi: Drop clock availability tests
selftests: vDSO: vdso_test_abi: Use ksft_finished()
selftests: vDSO: vdso_test_abi: Correctly skip whole test with missing vDSO
selftests: vDSO: Fix -Wunitialized in powerpc VDSO_CALL() wrapper
vdso: Add struct __kernel_old_timeval forward declaration to gettime.h
vdso: Gate VDSO_GETRANDOM behind HAVE_GENERIC_VDSO
vdso: Drop Kconfig GENERIC_VDSO_TIME_NS
vdso: Drop Kconfig GENERIC_VDSO_DATA_STORE
vdso: Drop kconfig GENERIC_COMPAT_VDSO
vdso: Drop kconfig GENERIC_VDSO_32
riscv: vdso: Untangle Kconfig logic
time: Build generic update_vsyscall() only with generic time vDSO
vdso/gettimeofday: Remove !CONFIG_TIME_NS stubs
vdso: Move ENABLE_COMPAT_VDSO from core to arm64
ARM: VDSO: Remove cntvct_ok global variable
vdso/datastore: Gate time data behind CONFIG_GENERIC_GETTIMEOFDAY
Pull TIF bit unification updates from Thomas Gleixner:
"A set of changes to consolidate the generic TIF (thread info flag)
bits accross architectures.
All architectures define the same set of generic TIF bits. This makes
it pointlessly hard to add a new generic TIF bit or to change an
existing one.
Provide a generic variant and convert the architectures which utilize
the generic entry code over to use it. The TIF space is divided into
16 generic bits and 16 architecture specific bits, which turned out to
provide enough space on both sides"
* tag 'core-core-2025-09-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
LoongArch: Fix bitflag conflict for TIF_FIXADE
riscv: Use generic TIF bits
loongarch: Use generic TIF bits
s390/entry: Remove unused TIF flags
s390: Use generic TIF bits
x86: Use generic TIF bits
asm-generic: Provide generic TIF infrastructure
Pull scheduler updates from Ingo Molnar:
"Core scheduler changes:
- Make migrate_{en,dis}able() inline, to improve performance
(Menglong Dong)
- Move STDL_INIT() functions out-of-line (Peter Zijlstra)
- Unify the SCHED_{SMT,CLUSTER,MC} Kconfig (Peter Zijlstra)
Fair scheduling:
- Defer throttling to when tasks exit to user-space, to reduce the
chance & impact of throttle-preemption with held locks and other
resources (Aaron Lu, Valentin Schneider)
- Get rid of sched_domains_curr_level hack for tl->cpumask(), as the
warning was getting triggered on certain topologies (Peter
Zijlstra)
Misc cleanups & fixes:
- Header cleanups (Menglong Dong)
- Fix race in push_dl_task() (Harshit Agarwal)"
* tag 'sched-core-2025-09-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix some typos in include/linux/preempt.h
sched: Make migrate_{en,dis}able() inline
rcu: Replace preempt.h with sched.h in include/linux/rcupdate.h
arch: Add the macro COMPILE_OFFSETS to all the asm-offsets.c
sched/fair: Do not balance task to a throttled cfs_rq
sched/fair: Do not special case tasks in throttled hierarchy
sched/fair: update_cfs_group() for throttled cfs_rqs
sched/fair: Propagate load for throttled cfs_rq
sched/fair: Get rid of throttled_lb_pair()
sched/fair: Task based throttle time accounting
sched/fair: Switch to task based throttle model
sched/fair: Implement throttle task work and related helpers
sched/fair: Add related data structure for task based throttle
sched: Unify the SCHED_{SMT,CLUSTER,MC} Kconfig
sched: Move STDL_INIT() functions out-of-line
sched/fair: Get rid of sched_domains_curr_level hack for tl->cpumask()
sched/deadline: Fix race in push_dl_task()
The kernel's CFI implementation uses the KCFI ABI specifically, and is
not strictly tied to a particular compiler. In preparation for GCC
supporting KCFI, rename CONFIG_CFI_CLANG to CONFIG_CFI (along with
associated options).
Use new "transitional" Kconfig option for old CONFIG_CFI_CLANG that will
enable CONFIG_CFI during olddefconfig.
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20250923213422.1105654-3-kees@kernel.org
Signed-off-by: Kees Cook <kees@kernel.org>
Common TIF bits do not have to be defined by every architecture. They can
be defined in a generic header.
That allows adding generic TIF bits without chasing a gazillion of
architecture headers, which is again a unjustified burden on anyone who
works on generic infrastructure as it always needs a boat load of work to
keep existing architecture code working when adding new stuff.
While it is not as horrible as the ignorance of the generic entry
infrastructure, it is a welcome mechanism to make architecture people
rethink their approach of just leaching generic improvements into
architecture code and thereby making it accumulatingly harder to maintain
and improve generic code. It's about time that this changes.
Provide the infrastructure and split the TIF space in half, 16 generic and
16 architecture specific bits.
This could probably be extended by TIF_SINGLESTEP and BLOCKSTEP, but those
are only used in architecture specific code. So leave them alone for now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Pull initial deferred unwind infrastructure from Steven Rostedt:
"This is the core infrastructure for the deferred unwinder that is
required for sframes[1]. Several other patch series are based on this
work although those patch series are not dependent on each other. In
order to simplify the development, having this core series upstream
will allow the other series to be worked on in parallel. The other
series are:
- The two patches to implement x86 support [2] [3]
- The s390 work [4]
- The perf work [5]
- The ftrace work [6]
- The sframe work [7]
And more is on the way.
The core infrastructure adds the following in kernel APIs:
- int unwind_user_faultable(struct unwind_stacktrace *trace);
Performs a user space stack trace that may fault user pages in.
- int unwind_deferred_init(struct unwind_work *work, unwind_callback_t func);
Allows a tracer to register with the unwind deferred
infrastructure.
- int unwind_deferred_request(struct unwind_work *work, u64 *cookie);
Used when a tracer request a deferred trace. Can be called from
interrupt or NMI context.
- void unwind_deferred_cancel(struct unwind_work *work);
Called by a tracer to unregister from the deferred unwind
infrastructure.
- void unwind_deferred_task_exit(struct task_struct *task);
Called by task exit code to flush any pending unwind requests.
- void unwind_task_init(struct task_struct *task);
Called by do_fork() to initialize the task struct for the
deferred unwinder.
- void unwind_task_free(struct task_struct *task);
Called by do_exit() to free up any resources used by the
deferred unwinder.
None of the above is actually compiled unless an architecture enables it,
which none currently do"
Link: https://sourceware.org/binutils/wiki/sframe [1]
Link: https://lore.kernel.org/linux-trace-kernel/20250717004958.260781923@kernel.org/ [2]
Link: https://lore.kernel.org/linux-trace-kernel/20250717004958.432327787@kernel.org/ [3]
Link: https://lore.kernel.org/linux-trace-kernel/20250710163522.3195293-1-jremus@linux.ibm.com/ [4]
Link: https://lore.kernel.org/linux-trace-kernel/20250718164119.089692174@kernel.org/ [5]
Link: https://lore.kernel.org/linux-trace-kernel/20250424192612.505622711@goodmis.org/ [6]
Link: https://lore.kernel.org/linux-trace-kernel/20250717012848.927473176@kernel.org/ [7]
* tag 'trace-deferred-unwind-v6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
unwind: Finish up unwind when a task exits
unwind deferred: Use SRCU unwind_deferred_task_work()
unwind: Add USED bit to only have one conditional on way back to user space
unwind deferred: Add unwind_completed mask to stop spurious callbacks
unwind deferred: Use bitmask to determine which callbacks to call
unwind_user/deferred: Make unwind deferral requests NMI-safe
unwind_user/deferred: Add deferred unwinding interface
unwind_user/deferred: Add unwind cache
unwind_user/deferred: Add unwind_user_faultable()
unwind_user: Add user space unwinding API with frame pointer support
Pull x86 CPU mitigation updates from Borislav Petkov:
- Untangle the Retbleed from the ITS mitigation on Intel. Allow for ITS
to enable stuffing independently from Retbleed, do some cleanups to
simplify and streamline the code
- Simplify SRSO and make mitigation types selection more versatile
depending on the Retbleed mitigation selection. Simplify code some
- Add the second part of the attack vector controls which provide a lot
friendlier user interface to the speculation mitigations than
selecting each one by one as it is now.
Instead, the selection of whole attack vectors which are relevant to
the system in use can be done and protection against only those
vectors is enabled, thus giving back some performance to the users
* tag 'x86_bugs_for_v6.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
x86/bugs: Print enabled attack vectors
x86/bugs: Add attack vector controls for TSA
x86/pti: Add attack vector controls for PTI
x86/bugs: Add attack vector controls for ITS
x86/bugs: Add attack vector controls for SRSO
x86/bugs: Add attack vector controls for L1TF
x86/bugs: Add attack vector controls for spectre_v2
x86/bugs: Add attack vector controls for BHI
x86/bugs: Add attack vector controls for spectre_v2_user
x86/bugs: Add attack vector controls for retbleed
x86/bugs: Add attack vector controls for spectre_v1
x86/bugs: Add attack vector controls for GDS
x86/bugs: Add attack vector controls for SRBDS
x86/bugs: Add attack vector controls for RFDS
x86/bugs: Add attack vector controls for MMIO
x86/bugs: Add attack vector controls for TAA
x86/bugs: Add attack vector controls for MDS
x86/bugs: Define attack vectors relevant for each bug
x86/Kconfig: Add arch attack vector support
cpu: Define attack vectors
...
Pull generic entry code updates from Thomas Gleixner:
- Split the code into syscall and exception/interrupt parts to ease the
conversion of ARM[64] to the generic entry infrastructure
- Extend syscall user dispatching to support a single intercepted range
instead of the default single non-intercepted range. That allows
monitoring/analysis of a specific executable range, e.g. a library,
and also provides flexibility for sandboxing scenarios
- Cleanup and extend the user dispatch selftest
* tag 'core-entry-2025-07-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
entry: Split generic entry into generic exception and syscall entry
selftests: Add tests for PR_SYS_DISPATCH_INCLUSIVE_ON
syscall_user_dispatch: Add PR_SYS_DISPATCH_INCLUSIVE_ON
selftests: Fix errno checking in syscall_user_dispatch test
In preparation for adding Clang sanitizer coverage stack depth tracking
that can support stack depth callbacks:
- Add the new top-level CONFIG_KSTACK_ERASE option which will be
implemented either with the stackleak GCC plugin, or with the Clang
stack depth callback support.
- Rename CONFIG_GCC_PLUGIN_STACKLEAK as needed to CONFIG_KSTACK_ERASE,
but keep it for anything specific to the GCC plugin itself.
- Rename all exposed "STACKLEAK" names and files to "KSTACK_ERASE" (named
for what it does rather than what it protects against), but leave as
many of the internals alone as possible to avoid even more churn.
While here, also split "prev_lowest_stack" into CONFIG_KSTACK_ERASE_METRICS,
since that's the only place it is referenced from.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250717232519.2984886-1-kees@kernel.org
Signed-off-by: Kees Cook <kees@kernel.org>
ARCH_HAS_CPU_ATTACK_VECTORS should be set for architectures which implement
the new attack-vector based controls for CPU mitigations. If an arch does
not support attack-vector based controls then an attempt to use them
results in a warning.
Signed-off-by: David Kaplan <david.kaplan@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20250707183316.1349127-4-david.kaplan@amd.com
Pull Kbuild updates from Masahiro Yamada:
- Improve performance in gendwarfksyms
- Remove deprecated EXTRA_*FLAGS and KBUILD_ENABLE_EXTRA_GCC_CHECKS
- Support CONFIG_HEADERS_INSTALL for ARCH=um
- Use more relative paths to sources files for better reproducibility
- Support the loong64 Debian architecture
- Add Kbuild bash completion
- Introduce intermediate vmlinux.unstripped for architectures that need
static relocations to be stripped from the final vmlinux
- Fix versioning in Debian packages for -rc releases
- Treat missing MODULE_DESCRIPTION() as an error
- Convert Nios2 Makefiles to use the generic rule for built-in DTB
- Add debuginfo support to the RPM package
* tag 'kbuild-v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (40 commits)
kbuild: rpm-pkg: build a debuginfo RPM
kconfig: merge_config: use an empty file as initfile
nios2: migrate to the generic rule for built-in DTB
rust: kbuild: skip `--remap-path-prefix` for `rustdoc`
kbuild: pacman-pkg: hardcode module installation path
kbuild: deb-pkg: don't set KBUILD_BUILD_VERSION unconditionally
modpost: require a MODULE_DESCRIPTION()
kbuild: make all file references relative to source root
x86: drop unnecessary prefix map configuration
kbuild: deb-pkg: add comment about future removal of KDEB_COMPRESS
kbuild: Add a help message for "headers"
kbuild: deb-pkg: remove "version" variable in mkdebian
kbuild: deb-pkg: fix versioning for -rc releases
Documentation/kbuild: Fix indentation in modules.rst example
x86: Get rid of Makefile.postlink
kbuild: Create intermediate vmlinux build with relocations preserved
kbuild: Introduce Kconfig symbol for linking vmlinux with relocations
kbuild: link-vmlinux.sh: Make output file name configurable
kbuild: do not generate .tmp_vmlinux*.map when CONFIG_VMLINUX_MAP=y
Revert "kheaders: Ignore silly-rename files"
...
Some architectures build vmlinux with static relocations preserved, but
strip them again from the final vmlinux image. Arch specific tools
consume these static relocations in order to construct relocation tables
for KASLR.
The fact that vmlinux is created, consumed and subsequently updated goes
against the typical, declarative paradigm used by Make, which is based
on rules and dependencies. So as a first step towards cleaning this up,
introduce a Kconfig symbol to declare that the arch wants to consume the
static relocations emitted into vmlinux. This will be wired up further
in subsequent patches.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Use the kernels own generic lib/muldi3.c implementation of muldi3 for
68K machines. Some 68K CPUs support 64bit multiplies so move the arch
specific umul_ppmm() macro into a header file that is included by
lib/muldi3.c. That way it can take advantage of the single instruction
when available.
There does not appear to be any existing mechanism for the generic
lib/muldi3.c code to pick up an external arch definition of umul_ppmm().
Create an arch specific libgcc.h that can optionally be included by
the system include/linux/libgcc.h to allow for this.
Somewhat oddly there is also a similar definition of umul_ppmm() in
the non-architecture code in lib/crypto/mpi/longlong.h for a wide range
or machines. Its presence ends up complicating the include setup and
means not being able to use something like compiler.h instead. Actually
there is a few other defines of umul_ppmm() macros spread around in
various architectures, but not directly usable for the m68k case.
Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
Link: https://lore.kernel.org/20231113133209.1367286-1-gerg@linux-m68k.org
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Pull Kbuild updates from Masahiro Yamada:
- Add generic support for built-in boot DTB files
- Enable TAB cycling for dialog buttons in nconfig
- Fix issues in streamline_config.pl
- Refactor Kconfig
- Add support for Clang's AutoFDO (Automatic Feedback-Directed
Optimization)
- Add support for Clang's Propeller, a profile-guided optimization.
- Change the working directory to the external module directory for M=
builds
- Support building external modules in a separate output directory
- Enable objtool for *.mod.o and additional kernel objects
- Use lz4 instead of deprecated lz4c
- Work around a performance issue with "git describe"
- Refactor modpost
* tag 'kbuild-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (85 commits)
kbuild: rename .tmp_vmlinux.kallsyms0.syms to .tmp_vmlinux0.syms
gitignore: Don't ignore 'tags' directory
kbuild: add dependency from vmlinux to resolve_btfids
modpost: replace tdb_hash() with hash_str()
kbuild: deb-pkg: add python3:native to build dependency
genksyms: reduce indentation in export_symbol()
modpost: improve error messages in device_id_check()
modpost: rename alias symbol for MODULE_DEVICE_TABLE()
modpost: rename variables in handle_moddevtable()
modpost: move strstarts() to modpost.h
modpost: convert do_usb_table() to a generic handler
modpost: convert do_of_table() to a generic handler
modpost: convert do_pnp_device_entry() to a generic handler
modpost: convert do_pnp_card_entries() to a generic handler
modpost: call module_alias_printf() from all do_*_entry() functions
modpost: pass (struct module *) to do_*_entry() functions
modpost: remove DEF_FIELD_ADDR_VAR() macro
modpost: deduplicate MODULE_ALIAS() for all drivers
modpost: introduce module_alias_printf() helper
modpost: remove unnecessary check in do_acpi_entry()
...
Add the build support for using Clang's Propeller optimizer. Like
AutoFDO, Propeller uses hardware sampling to gather information
about the frequency of execution of different code paths within a
binary. This information is then used to guide the compiler's
optimization decisions, resulting in a more efficient binary.
The support requires a Clang compiler LLVM 19 or later, and the
create_llvm_prof tool
(https://github.com/google/autofdo/releases/tag/v0.30.1). This
commit is limited to x86 platforms that support PMU features
like LBR on Intel machines and AMD Zen3 BRS.
Here is an example workflow for building an AutoFDO+Propeller
optimized kernel:
1) Build the kernel on the host machine, with AutoFDO and Propeller
build config
CONFIG_AUTOFDO_CLANG=y
CONFIG_PROPELLER_CLANG=y
then
$ make LLVM=1 CLANG_AUTOFDO_PROFILE=<autofdo_profile>
“<autofdo_profile>” is the profile collected when doing a non-Propeller
AutoFDO build. This step builds a kernel that has the same optimization
level as AutoFDO, plus a metadata section that records basic block
information. This kernel image runs as fast as an AutoFDO optimized
kernel.
2) Install the kernel on test/production machines.
3) Run the load tests. The '-c' option in perf specifies the sample
event period. We suggest using a suitable prime number,
like 500009, for this purpose.
For Intel platforms:
$ perf record -e BR_INST_RETIRED.NEAR_TAKEN:k -a -N -b -c <count> \
-o <perf_file> -- <loadtest>
For AMD platforms:
The supported system are: Zen3 with BRS, or Zen4 with amd_lbr_v2
# To see if Zen3 support LBR:
$ cat proc/cpuinfo | grep " brs"
# To see if Zen4 support LBR:
$ cat proc/cpuinfo | grep amd_lbr_v2
# If the result is yes, then collect the profile using:
$ perf record --pfm-events RETIRED_TAKEN_BRANCH_INSTRUCTIONS:k -a \
-N -b -c <count> -o <perf_file> -- <loadtest>
4) (Optional) Download the raw perf file to the host machine.
5) Generate Propeller profile:
$ create_llvm_prof --binary=<vmlinux> --profile=<perf_file> \
--format=propeller --propeller_output_module_name \
--out=<propeller_profile_prefix>_cc_profile.txt \
--propeller_symorder=<propeller_profile_prefix>_ld_profile.txt
“create_llvm_prof” is the profile conversion tool, and a prebuilt
binary for linux can be found on
https://github.com/google/autofdo/releases/tag/v0.30.1 (can also build
from source).
"<propeller_profile_prefix>" can be something like
"/home/user/dir/any_string".
This command generates a pair of Propeller profiles:
"<propeller_profile_prefix>_cc_profile.txt" and
"<propeller_profile_prefix>_ld_profile.txt".
6) Rebuild the kernel using the AutoFDO and Propeller profile files.
CONFIG_AUTOFDO_CLANG=y
CONFIG_PROPELLER_CLANG=y
and
$ make LLVM=1 CLANG_AUTOFDO_PROFILE=<autofdo_profile> \
CLANG_PROPELLER_PROFILE_PREFIX=<propeller_profile_prefix>
Co-developed-by: Han Shen <shenhan@google.com>
Signed-off-by: Han Shen <shenhan@google.com>
Signed-off-by: Rong Xu <xur@google.com>
Suggested-by: Sriraman Tallam <tmsriram@google.com>
Suggested-by: Krzysztof Pszeniczny <kpszeniczny@google.com>
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Suggested-by: Stephane Eranian <eranian@google.com>
Tested-by: Yonghong Song <yonghong.song@linux.dev>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Kees Cook <kees@kernel.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Pull powerpc updates from Michael Ellerman:
- Rework kfence support for the HPT MMU to work on systems with >= 16TB
of RAM.
- Remove the powerpc "maple" platform, used by the "Yellow Dog
Powerstation".
- Add support for DYNAMIC_FTRACE_WITH_CALL_OPS,
DYNAMIC_FTRACE_WITH_DIRECT_CALLS & BPF Trampolines.
- Add support for running KVM nested guests on Power11.
- Other small features, cleanups and fixes.
Thanks to Amit Machhiwal, Arnd Bergmann, Christophe Leroy, Costa
Shulyupin, David Hunter, David Wang, Disha Goel, Gautam Menghani, Geert
Uytterhoeven, Hari Bathini, Julia Lawall, Kajol Jain, Keith Packard,
Lukas Bulwahn, Madhavan Srinivasan, Markus Elfring, Michal Suchanek,
Ming Lei, Mukesh Kumar Chaurasiya, Nathan Chancellor, Naveen N Rao,
Nicholas Piggin, Nysal Jan K.A, Paulo Miguel Almeida, Pavithra Prakash,
Ritesh Harjani (IBM), Rob Herring (Arm), Sachin P Bappalige, Shen
Lichuan, Simon Horman, Sourabh Jain, Thomas Weißschuh, Thorsten Blum,
Thorsten Leemhuis, Venkat Rao Bagalkote, Zhang Zekun, and zhang jiao.
* tag 'powerpc-6.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (89 commits)
EDAC/powerpc: Remove PPC_MAPLE drivers
powerpc/perf: Add per-task/process monitoring to vpa_pmu driver
powerpc/kvm: Add vpa latency counters to kvm_vcpu_arch
docs: ABI: sysfs-bus-event_source-devices-vpa-pmu: Document sysfs event format entries for vpa_pmu
powerpc/perf: Add perf interface to expose vpa counters
MAINTAINERS: powerpc: Mark Maddy as "M"
powerpc/Makefile: Allow overriding CPP
powerpc-km82xx.c: replace of_node_put() with __free
ps3: Correct some typos in comments
powerpc/kexec: Fix return of uninitialized variable
macintosh: Use common error handling code in via_pmu_led_init()
powerpc/powermac: Use of_property_match_string() in pmac_has_backlight_type()
powerpc: remove dead config options for MPC85xx platform support
powerpc/xive: Use cpumask_intersects()
selftests/powerpc: Remove the path after initialization.
powerpc/xmon: symbol lookup length fixed
powerpc/ep8248e: Use %pa to format resource_size_t
powerpc/ps3: Reorganize kerneldoc parameter names
KVM: PPC: Book3S HV: Fix kmv -> kvm typo
powerpc/sstep: make emulate_vsx_load and emulate_vsx_store static
...
Pull MM updates from Andrew Morton:
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection
algorithm. This leads to improved memory savings.
- Wei Yang has gone to town on the mapletree code, contributing several
series which clean up the implementation:
- "refine mas_mab_cp()"
- "Reduce the space to be cleared for maple_big_node"
- "maple_tree: simplify mas_push_node()"
- "Following cleanup after introduce mas_wr_store_type()"
- "refine storing null"
- The series "selftests/mm: hugetlb_fault_after_madv improvements" from
David Hildenbrand fixes this selftest for s390.
- The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
implements some rationaizations and cleanups in the page mapping
code.
- The series "mm: optimize shadow entries removal" from Shakeel Butt
optimizes the file truncation code by speeding up the handling of
shadow entries.
- The series "Remove PageKsm()" from Matthew Wilcox completes the
migration of this flag over to being a folio-based flag.
- The series "Unify hugetlb into arch_get_unmapped_area functions" from
Oscar Salvador implements a bunch of consolidations and cleanups in
the hugetlb code.
- The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
takes away the wp-fault time practice of turning a huge zero page
into small pages. Instead we replace the whole thing with a THP. More
consistent cleaner and potentiall saves a large number of pagefaults.
- The series "percpu: Add a test case and fix for clang" from Andy
Shevchenko enhances and fixes the kernel's built in percpu test code.
- The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
optimizes mremap() by avoiding doing things which we didn't need to
do.
- The series "Improve the tmpfs large folio read performance" from
Baolin Wang teaches tmpfs to copy data into userspace at the folio
size rather than as individual pages. A 20% speedup was observed.
- The series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON
splitting.
- The series "memcg-v1: fully deprecate charge moving" from Shakeel
Butt removes the long-deprecated memcgv2 charge moving feature.
- The series "fix error handling in mmap_region() and refactor" from
Lorenzo Stoakes cleanup up some of the mmap() error handling and
addresses some potential performance issues.
- The series "x86/module: use large ROX pages for text allocations"
from Mike Rapoport teaches x86 to use large pages for
read-only-execute module text.
- The series "page allocation tag compression" from Suren Baghdasaryan
is followon maintenance work for the new page allocation profiling
feature.
- The series "page->index removals in mm" from Matthew Wilcox remove
most references to page->index in mm/. A slow march towards shrinking
struct page.
- The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
interface tests" from Andrew Paniakin performs maintenance work for
DAMON's self testing code.
- The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
improves zswap's batching of compression and decompression. It is a
step along the way towards using Intel IAA hardware acceleration for
this zswap operation.
- The series "kasan: migrate the last module test to kunit" from
Sabyrzhan Tasbolatov completes the migration of the KASAN built-in
tests over to the KUnit framework.
- The series "implement lightweight guard pages" from Lorenzo Stoakes
permits userapace to place fault-generating guard pages within a
single VMA, rather than requiring that multiple VMAs be created for
this. Improved efficiencies for userspace memory allocators are
expected.
- The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
tracepoints to provide increased visibility into memcg stats flushing
activity.
- The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
fixes a zram buglet which potentially affected performance.
- The series "mm: add more kernel parameters to control mTHP" from
Maíra Canal enhances our ability to control/configuremultisize THP
from the kernel boot command line.
- The series "kasan: few improvements on kunit tests" from Sabyrzhan
Tasbolatov has a couple of fixups for the KASAN KUnit tests.
- The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
from Kairui Song optimizes list_lru memory utilization when lockdep
is enabled.
* tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits)
cma: enforce non-zero pageblock_order during cma_init_reserved_mem()
mm/kfence: add a new kunit test test_use_after_free_read_nofault()
zram: fix NULL pointer in comp_algorithm_show()
memcg/hugetlb: add hugeTLB counters to memcg
vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event
mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
zram: ZRAM_DEF_COMP should depend on ZRAM
MAINTAINERS/MEMORY MANAGEMENT: add document files for mm
Docs/mm/damon: recommend academic papers to read and/or cite
mm: define general function pXd_init()
kmemleak: iommu/iova: fix transient kmemleak false positive
mm/list_lru: simplify the list_lru walk callback function
mm/list_lru: split the lock to per-cgroup scope
mm/list_lru: simplify reparenting and initial allocation
mm/list_lru: code clean up for reparenting
mm/list_lru: don't export list_lru_add
mm/list_lru: don't pass unnecessary key parameters
kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
...
Pull vdso data page handling updates from Thomas Gleixner:
"First steps of consolidating the VDSO data page handling.
The VDSO data page handling is architecture specific for historical
reasons, but there is no real technical reason to do so.
Aside of that VDSO data has become a dump ground for various
mechanisms and fail to provide a clear separation of the
functionalities.
Clean this up by:
- consolidating the VDSO page data by getting rid of architecture
specific warts especially in x86 and PowerPC.
- removing the last includes of header files which are pulling in
other headers outside of the VDSO namespace.
- seperating timekeeping and other VDSO data accordingly.
Further consolidation of the VDSO page handling is done in subsequent
changes scheduled for the next merge window.
This also lays the ground for expanding the VDSO time getters for
independent PTP clocks in a generic way without making every
architecture add support seperately"
* tag 'timers-vdso-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
x86/vdso: Add missing brackets in switch case
vdso: Rename struct arch_vdso_data to arch_vdso_time_data
powerpc: Split systemcfg struct definitions out from vdso
powerpc: Split systemcfg data out of vdso data page
powerpc: Add kconfig option for the systemcfg page
powerpc/pseries/lparcfg: Use num_possible_cpus() for potential processors
powerpc/pseries/lparcfg: Fix printing of system_active_processors
powerpc/procfs: Propagate error of remap_pfn_range()
powerpc/vdso: Remove offset comment from 32bit vdso_arch_data
x86/vdso: Split virtual clock pages into dedicated mapping
x86/vdso: Delete vvar.h
x86/vdso: Access vdso data without vvar.h
x86/vdso: Move the rng offset to vsyscall.h
x86/vdso: Access rng vdso data without vvar.h
x86/vdso: Access timens vdso data without vvar.h
x86/vdso: Allocate vvar page from C code
x86/vdso: Access rng data from kernel without vvar
x86/vdso: Place vdso_data at beginning of vvar page
x86/vdso: Use __arch_get_vdso_data() to access vdso data
x86/mm/mmap: Remove arch_vma_name()
...
Pull performance events updates from Ingo Molnar:
"Uprobes:
- Add BPF session support (Jiri Olsa)
- Switch to RCU Tasks Trace flavor for better performance (Andrii
Nakryiko)
- Massively increase uretprobe SMP scalability by SRCU-protecting
the uretprobe lifetime (Andrii Nakryiko)
- Kill xol_area->slot_count (Oleg Nesterov)
Core facilities:
- Implement targeted high-frequency profiling by adding the ability
for an event to "pause" or "resume" AUX area tracing (Adrian
Hunter)
VM profiling/sampling:
- Correct perf sampling with guest VMs (Colton Lewis)
New hardware support:
- x86/intel: Add PMU support for Intel ArrowLake-H CPUs (Dapeng Mi)
Misc fixes and enhancements:
- x86/intel/pt: Fix buffer full but size is 0 case (Adrian Hunter)
- x86/amd: Warn only on new bits set (Breno Leitao)
- x86/amd/uncore: Avoid a false positive warning about snprintf
truncation in amd_uncore_umc_ctx_init (Jean Delvare)
- uprobes: Re-order struct uprobe_task to save some space
(Christophe JAILLET)
- x86/rapl: Move the pmu allocation out of CPU hotplug (Kan Liang)
- x86/rapl: Clean up cpumask and hotplug (Kan Liang)
- uprobes: Deuglify xol_get_insn_slot/xol_free_insn_slot paths (Oleg
Nesterov)"
* tag 'perf-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
perf/core: Correct perf sampling with guest VMs
perf/x86: Refactor misc flag assignments
perf/powerpc: Use perf_arch_instruction_pointer()
perf/core: Hoist perf_instruction_pointer() and perf_misc_flags()
perf/arm: Drop unused functions
uprobes: Re-order struct uprobe_task to save some space
perf/x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init
perf/x86/intel: Do not enable large PEBS for events with aux actions or aux sampling
perf/x86/intel/pt: Add support for pause / resume
perf/core: Add aux_pause, aux_resume, aux_start_paused
perf/x86/intel/pt: Fix buffer full but size is 0 case
uprobes: SRCU-protect uretprobe lifetime (with timeout)
uprobes: allow put_uprobe() from non-sleepable softirq context
perf/x86/rapl: Clean up cpumask and hotplug
perf/x86/rapl: Move the pmu allocation out of CPU hotplug
uprobe: Add support for session consumer
uprobe: Add data pointer to consumer handlers
perf/x86/amd: Warn only on new bits set
uprobes: fold xol_take_insn_slot() into xol_get_insn_slot()
uprobes: kill xol_area->slot_count
...
Add the build support for using Clang's AutoFDO. Building the kernel
with AutoFDO does not reduce the optimization level from the
compiler. AutoFDO uses hardware sampling to gather information about
the frequency of execution of different code paths within a binary.
This information is then used to guide the compiler's optimization
decisions, resulting in a more efficient binary. Experiments
showed that the kernel can improve up to 10% in latency.
The support requires a Clang compiler after LLVM 17. This submission
is limited to x86 platforms that support PMU features like LBR on
Intel machines and AMD Zen3 BRS. Support for SPE on ARM 1,
and BRBE on ARM 1 is part of planned future work.
Here is an example workflow for AutoFDO kernel:
1) Build the kernel on the host machine with LLVM enabled, for example,
$ make menuconfig LLVM=1
Turn on AutoFDO build config:
CONFIG_AUTOFDO_CLANG=y
With a configuration that has LLVM enabled, use the following
command:
scripts/config -e AUTOFDO_CLANG
After getting the config, build with
$ make LLVM=1
2) Install the kernel on the test machine.
3) Run the load tests. The '-c' option in perf specifies the sample
event period. We suggest using a suitable prime number,
like 500009, for this purpose.
For Intel platforms:
$ perf record -e BR_INST_RETIRED.NEAR_TAKEN:k -a -N -b -c <count> \
-o <perf_file> -- <loadtest>
For AMD platforms:
The supported system are: Zen3 with BRS, or Zen4 with amd_lbr_v2
For Zen3:
$ cat proc/cpuinfo | grep " brs"
For Zen4:
$ cat proc/cpuinfo | grep amd_lbr_v2
$ perf record --pfm-events RETIRED_TAKEN_BRANCH_INSTRUCTIONS:k -a \
-N -b -c <count> -o <perf_file> -- <loadtest>
4) (Optional) Download the raw perf file to the host machine.
5) To generate an AutoFDO profile, two offline tools are available:
create_llvm_prof and llvm_profgen. The create_llvm_prof tool is part
of the AutoFDO project and can be found on GitHub
(https://github.com/google/autofdo), version v0.30.1 or later. The
llvm_profgen tool is included in the LLVM compiler itself. It's
important to note that the version of llvm_profgen doesn't need to
match the version of Clang. It needs to be the LLVM 19 release or
later, or from the LLVM trunk.
$ llvm-profgen --kernel --binary=<vmlinux> --perfdata=<perf_file> \
-o <profile_file>
or
$ create_llvm_prof --binary=<vmlinux> --profile=<perf_file> \
--format=extbinary --out=<profile_file>
Note that multiple AutoFDO profile files can be merged into one via:
$ llvm-profdata merge -o <profile_file> <profile_1> ... <profile_n>
6) Rebuild the kernel using the AutoFDO profile file with the same config
as step 1, (Note CONFIG_AUTOFDO_CLANG needs to be enabled):
$ make LLVM=1 CLANG_AUTOFDO_PROFILE=<profile_file>
Co-developed-by: Han Shen <shenhan@google.com>
Signed-off-by: Han Shen <shenhan@google.com>
Signed-off-by: Rong Xu <xur@google.com>
Suggested-by: Sriraman Tallam <tmsriram@google.com>
Suggested-by: Krzysztof Pszeniczny <kpszeniczny@google.com>
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Suggested-by: Stephane Eranian <eranian@google.com>
Tested-by: Yonghong Song <yonghong.song@linux.dev>
Tested-by: Yabin Cui <yabinc@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Kees Cook <kees@kernel.org>
Tested-by: Peter Jung <ptr1337@cachyos.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
On powerpc, we would like to be able to make a pass on vmlinux.o and
generate a new object file to be linked into vmlinux. Add a generic pass
in Makefile.vmlinux that architectures can use for this purpose.
Architectures need to select CONFIG_ARCH_WANTS_PRE_LINK_VMLINUX and must
provide arch/<arch>/tools/Makefile with .arch.vmlinux.o target, which
will be invoked prior to the final vmlinux link step.
Acked-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Naveen N Rao <naveen@kernel.org>
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://patch.msgid.link/20241030070850.1361304-12-hbathini@linux.ibm.com
The HAVE_CFI_ICALL_NORMALIZE_INTEGERS option has some tricky conditions
when KASAN or GCOV are turned on, as in that case we need some clang and
rustc fixes [1][2] to avoid boot failures. The intent with the current
setup is that you should be able to override the check and turn on the
option if your clang/rustc has the fix. However, this override does not
work in practice. Thus, use the new RUSTC_LLVM_VERSION to correctly
implement the check for whether the fix is available.
Additionally, remove KASAN_HW_TAGS from the list of incompatible
options. The CFI_ICALL_NORMALIZE_INTEGERS option is incompatible with
KASAN because LLVM will emit some constructors when using KASAN that are
assigned incorrect CFI tags. These constructors are emitted due to use
of -fsanitize=kernel-address or -fsanitize=kernel-hwaddress that are
respectively passed when KASAN_GENERIC or KASAN_SW_TAGS are enabled.
However, the KASAN_HW_TAGS option relies on hardware support for MTE
instead and does not pass either flag. (Note also that KASAN_HW_TAGS
does not `select CONSTRUCTORS`.)
Link: https://github.com/llvm/llvm-project/pull/104826 [1]
Link: https://github.com/rust-lang/rust/pull/129373 [2]
Fixes: 4c66f8307a ("cfi: encode cfi normalized integers + kasan/gcov bug in Kconfig")
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20241010-icall-detect-vers-v1-2-8f114956aa88@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
There is a bug in the LLVM implementation of KASAN and GCOV that makes
these options incompatible with the CFI_ICALL_NORMALIZE_INTEGERS option.
The bug has already been fixed in llvm/clang [1] and rustc [2]. However,
Kconfig currently has no way to gate features on the LLVM version inside
rustc, so we cannot write down a precise `depends on` clause in this
case. Instead, a `def_bool` option is defined for whether
CFI_ICALL_NORMALIZE_INTEGERS is available, and its default value is set
to false when GCOV or KASAN are turned on. End users using a patched
clang/rustc can turn on the HAVE_CFI_ICALL_NORMALIZE_INTEGERS option
directly to override this.
An alternative solution is to inspect a binary created by clang or rustc
to see whether the faulty CFI tags are in the binary. This would be a
precise check, but it would involve hard-coding the *hashed* version of
the CFI tag. This is because there's no way to get clang or rustc to
output the unhased version of the CFI tag. Relying on the precise
hashing algorithm using by CFI seems too fragile, so I have not pursued
this option. Besides, this kind of hack is exactly what lead to the LLVM
bug in the first place.
If the CFI_ICALL_NORMALIZE_INTEGERS option is used without CONFIG_RUST,
then we actually can perform a precise check today: just compare the
clang version number. This works since clang and llvm are always updated
in lockstep. However, encoding this in Kconfig would give the
HAVE_CFI_ICALL_NORMALIZE_INTEGERS option a dependency on CONFIG_RUST,
which is not possible as the reverse dependency already exists.
HAVE_CFI_ICALL_NORMALIZE_INTEGERS is defined to be a `def_bool` instead
of `bool` to avoid asking end users whether they want to turn on the
option. Turning it on explicitly is something only experts should do, so
making it hard to do so is not an issue.
I added a `depends on CFI_CLANG` clause to the new Kconfig option. I'm
not sure whether that makes sense or not, but it doesn't seem to make a
big difference.
In a future kernel release, I would like to add a Kconfig option similar
to CLANG_VERSION/RUSTC_VERSION for inspecting the version of the LLVM
inside rustc. Once that feature lands, this logic will be replaced with
a precise version check. This check is not being introduced here to
avoid introducing a new _VERSION constant in a fix.
Link: https://github.com/llvm/llvm-project/pull/104826 [1]
Link: https://github.com/rust-lang/rust/pull/129373 [2]
Fixes: ce4a262098 ("cfi: add CONFIG_CFI_ICALL_NORMALIZE_INTEGERS")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202409231044.4f064459-oliver.sang@intel.com
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20240925-cfi-norm-kasan-fix-v1-1-0328985cdf33@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Pull Rust updates from Miguel Ojeda:
"Toolchain and infrastructure:
- Support 'MITIGATION_{RETHUNK,RETPOLINE,SLS}' (which cleans up
objtool warnings), teach objtool about 'noreturn' Rust symbols and
mimic '___ADDRESSABLE()' for 'module_{init,exit}'. With that, we
should be objtool-warning-free, so enable it to run for all Rust
object files.
- KASAN (no 'SW_TAGS'), KCFI and shadow call sanitizer support.
- Support 'RUSTC_VERSION', including re-config and re-build on
change.
- Split helpers file into several files in a folder, to avoid
conflicts in it. Eventually those files will be moved to the right
places with the new build system. In addition, remove the need to
manually export the symbols defined there, reusing existing
machinery for that.
- Relax restriction on configurations with Rust + GCC plugins to just
the RANDSTRUCT plugin.
'kernel' crate:
- New 'list' module: doubly-linked linked list for use with reference
counted values, which is heavily used by the upcoming Rust Binder.
This includes 'ListArc' (a wrapper around 'Arc' that is guaranteed
unique for the given ID), 'AtomicTracker' (tracks whether a
'ListArc' exists using an atomic), 'ListLinks' (the prev/next
pointers for an item in a linked list), 'List' (the linked list
itself), 'Iter' (an iterator over a 'List'), 'Cursor' (a cursor
into a 'List' that allows to remove elements), 'ListArcField' (a
field exclusively owned by a 'ListArc'), as well as support for
heterogeneous lists.
- New 'rbtree' module: red-black tree abstractions used by the
upcoming Rust Binder.
This includes 'RBTree' (the red-black tree itself), 'RBTreeNode' (a
node), 'RBTreeNodeReservation' (a memory reservation for a node),
'Iter' and 'IterMut' (immutable and mutable iterators), 'Cursor'
(bidirectional cursor that allows to remove elements), as well as
an entry API similar to the Rust standard library one.
- 'init' module: add 'write_[pin_]init' methods and the
'InPlaceWrite' trait. Add the 'assert_pinned!' macro.
- 'sync' module: implement the 'InPlaceInit' trait for 'Arc' by
introducing an associated type in the trait.
- 'alloc' module: add 'drop_contents' method to 'BoxExt'.
- 'types' module: implement the 'ForeignOwnable' trait for
'Pin<Box<T>>' and improve the trait's documentation. In addition,
add the 'into_raw' method to the 'ARef' type.
- 'error' module: in preparation for the upcoming Rust support for
32-bit architectures, like arm, locally allow Clippy lint for
those.
Documentation:
- https://rust.docs.kernel.org has been announced, so link to it.
- Enable rustdoc's "jump to definition" feature, making its output a
bit closer to the experience in a cross-referencer.
- Debian Testing now also provides recent Rust releases (outside of
the freeze period), so add it to the list.
MAINTAINERS:
- Trevor is joining as reviewer of the "RUST" entry.
And a few other small bits"
* tag 'rust-6.12' of https://github.com/Rust-for-Linux/linux: (54 commits)
kasan: rust: Add KASAN smoke test via UAF
kbuild: rust: Enable KASAN support
rust: kasan: Rust does not support KHWASAN
kbuild: rust: Define probing macros for rustc
kasan: simplify and clarify Makefile
rust: cfi: add support for CFI_CLANG with Rust
cfi: add CONFIG_CFI_ICALL_NORMALIZE_INTEGERS
rust: support for shadow call stack sanitizer
docs: rust: include other expressions in conditional compilation section
kbuild: rust: replace proc macros dependency on `core.o` with the version text
kbuild: rust: rebuild if the version text changes
kbuild: rust: re-run Kconfig if the version text changes
kbuild: rust: add `CONFIG_RUSTC_VERSION`
rust: avoid `box_uninit_write` feature
MAINTAINERS: add Trevor Gross as Rust reviewer
rust: rbtree: add `RBTree::entry`
rust: rbtree: add cursor
rust: rbtree: add mutable iterator
rust: rbtree: add iterator
rust: rbtree: add red-black tree implementation backed by the C version
...
Pull dma-mapping updates from Christoph Hellwig:
- support DMA zones for arm64 systems where memory starts at > 4GB
(Baruch Siach, Catalin Marinas)
- support direct calls into dma-iommu and thus obsolete dma_map_ops for
many common configurations (Leon Romanovsky)
- add DMA-API tracing (Sean Anderson)
- remove the not very useful return value from various dma_set_* APIs
(Christoph Hellwig)
- misc cleanups and minor optimizations (Chen Y, Yosry Ahmed, Christoph
Hellwig)
* tag 'dma-mapping-6.12-2024-09-19' of git://git.infradead.org/users/hch/dma-mapping:
dma-mapping: reflow dma_supported
dma-mapping: reliably inform about DMA support for IOMMU
dma-mapping: add tracing for dma-mapping API calls
dma-mapping: use IOMMU DMA calls for common alloc/free page calls
dma-direct: optimize page freeing when it is not addressable
dma-mapping: clearly mark DMA ops as an architecture feature
vdpa_sim: don't select DMA_OPS
arm64: mm: keep low RAM dma zone
dma-mapping: don't return errors from dma_set_max_seg_size
dma-mapping: don't return errors from dma_set_seg_boundary
dma-mapping: don't return errors from dma_set_min_align_mask
scsi: check that busses support the DMA API before setting dma parameters
arm64: mm: fix DMA zone when dma-ranges is missing
dma-mapping: direct calls for dma-iommu
dma-mapping: call ->unmap_page and ->unmap_sg unconditionally
arm64: support DMA zone above 4GB
dma-mapping: replace zone_dma_bits by zone_dma_limit
dma-mapping: use bit masking to check VM_DMA_COHERENT
Introduce a Kconfig option for enabling the experimental option to
normalize integer types. This ensures that integer types of the same
size and signedness are considered compatible by the Control Flow
Integrity sanitizer.
The security impact of this flag is minimal. When Sami Tolvanen looked
into it, he found that integer normalization reduced the number of
unique type hashes in the kernel by ~1%, which is acceptable.
This option exists for compatibility with Rust, as C and Rust do not
have the same set of integer types. There are cases where C has two
different integer types of the same size and signedness, but Rust only
has one integer type of that size and signedness. When Rust calls into
C functions using such types in their signature, this results in CFI
failures. One example is 'unsigned long long' and 'unsigned long' which
are both 64-bit on LP64 targets, so on those targets this flag will give
both types the same CFI tag.
This flag changes the ABI heavily. It is not applied automatically when
CONFIG_RUST is turned on to make sure that the CONFIG_RUST option does
not change the ABI of C code. For example, some build may need to make
other changes atomically with toggling this flag. Having it be a
separate option makes it possible to first turn on normalized integer
tags, and then later turn on CONFIG_RUST.
Similarly, when turning on CONFIG_RUST in a build, you may need a few
attempts where the RUST=y commit gets reverted a few times. It is
inconvenient if reverting RUST=y also requires reverting the changes you
made to support normalized integer tags.
To avoid having this flag impact builds that don't care about this, the
next patch in this series will make CONFIG_RUST turn on this option
using `select` rather than `depends on`.
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Gatlin Newhouse <gatlin.newhouse@gmail.com>
Acked-by: Kees Cook <kees@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240801-kcfi-v2-1-c93caed3d121@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
DMA ops are a helper for architectures and not for drivers to override
the DMA implementation.
Unfortunately driver authors keep ignoring this. Make the fact more
clear by renaming the symbol to ARCH_HAS_DMA_OPS and having the two drivers
overriding their dma_ops depend on that. These drivers should probably be
marked broken, but we can give them a bit of a grace period for that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> # for IPU6
Acked-by: Robin Murphy <robin.murphy@arm.com>
Context tracking state related symbols currently use a mix of the
CONTEXT_ (e.g. CONTEXT_KERNEL) and CT_SATE_ (e.g. CT_STATE_MASK) prefixes.
Clean up the naming and make the ctx_state enum use the CT_STATE_ prefix.
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
This reverts commit 3afb76a66b.
This was a wrongheaded workaround for an issue that had already been
fixed much better by commit 4ef9ad19e1 ("mm: huge_memory: don't force
huge page alignment on 32 bit").
Asking users questions at kernel compile time that they can't make sense
of is not a viable strategy. And the fact that even the kernel VM
maintainers apparently didn't catch that this "fix" is not a fix any
more pretty much proves the point that people can't be expected to
understand the implications of the question.
It may well be the case that we could improve things further, and that
__thp_get_unmapped_area() should take the mapping randomization into
account even for 64-bit kernels. Maybe we should not be so eager to use
THP mappings.
But in no case should this be a kernel config option.
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An ASLR regression was noticed [1] and tracked down to file-mapped areas
being backed by THP in recent kernels. The 21-bit alignment constraint
for such mappings reduces the entropy for randomizing the placement of
64-bit library mappings and breaks ASLR completely for 32-bit libraries.
The reported issue is easily addressed by increasing vm.mmap_rnd_bits and
vm.mmap_rnd_compat_bits. This patch just provides a simple way to set
ARCH_MMAP_RND_BITS and ARCH_MMAP_RND_COMPAT_BITS to their maximum values
allowed by the architecture at build time.
[1] https://zolutal.github.io/aslrnt/
[akpm@linux-foundation.org: default to `y' if 32-bit, per Rafael]
Link: https://lkml.kernel.org/r/20240606180622.102099-1-aquini@redhat.com
Fixes: 1854bc6e24 ("mm/readahead: Align file mappings for non-DAX")
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kprobes depended on CONFIG_MODULES because it has to allocate memory for
code.
Since code allocations are now implemented with execmem, kprobes can be
enabled in non-modular kernels.
Add #ifdef CONFIG_MODULE guards for the code dealing with kprobes inside
modules, make CONFIG_KPROBES select CONFIG_EXECMEM and drop the
dependency of CONFIG_KPROBES on CONFIG_MODULES.
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
[mcgrof: rebase in light of NEED_TASKS_RCU ]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Extend execmem parameters to accommodate more complex overrides of
module_alloc() by architectures.
This includes specification of a fallback range required by arm, arm64
and powerpc, EXECMEM_MODULE_DATA type required by powerpc, support for
allocation of KASAN shadow required by s390 and x86 and support for
late initialization of execmem required by arm64.
The core implementation of execmem_alloc() takes care of suppressing
warnings when the initial allocation fails but there is a fallback range
defined.
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Tested-by: Liviu Dudau <liviu@dudau.co.uk>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Pull execve updates from Kees Cook:
- Provide knob to change (previously fixed) coredump NOTES size
(Allen Pais)
- Add sched_prepare_exec tracepoint (Marco Elver)
- Make /proc/$pid/auxv work under binfmt_elf_fdpic (Max Filippov)
- Convert ARCH_HAVE_EXTRA_ELF_NOTES to proper Kconfig (Vignesh
Balasubramanian)
- Leave a gap between .bss and brk
* tag 'execve-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
fs/coredump: Enable dynamic configuration of max file note size
binfmt_elf_fdpic: fix /proc/<pid>/auxv
binfmt_elf: Leave a gap between .bss and brk
Replace macro "ARCH_HAVE_EXTRA_ELF_NOTES" with kconfig
tracing: Add sched_prepare_exec tracepoint
Pull cmpxchg updates from Paul McKenney:
"Provide one-byte and two-byte cmpxchg() support on sparc32, parisc,
and csky
This provides native one-byte and two-byte cmpxchg() support for
sparc32 and parisc, courtesy of Al Viro. This support is provided by
the same hashed-array-of-locks technique used for the other atomic
operations provided for these two platforms.
There is also emulated one-byte cmpxchg() support for csky using a new
cmpxchg_emu_u8() function that uses a four-byte cmpxchg() to emulate
the one-byte variant.
Similar patches for emulation of one-byte cmpxchg() for arc, sh, and
xtensa have not yet received maintainer acks, so they are slated for
the v6.11 merge window"
* tag 'cmpxchg.2024.05.11a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu:
csky: Emulate one-byte cmpxchg
lib: Add one-byte emulation function
parisc: add u16 support to cmpxchg()
parisc: add missing export of __cmpxchg_u8()
parisc: unify implementations of __cmpxchg_u{8,32,64}
parisc: __cmpxchg_u32(): lift conversion into the callers
sparc32: add __cmpxchg_u{8,16}() and teach __cmpxchg() to handle those sizes
sparc32: unify __cmpxchg_u{32,64}
sparc32: make the first argument of __cmpxchg_u64() volatile u64 *
sparc32: make __cmpxchg_u32() return u32