Pull non-MM updates from Andrew Morton:
- "panic: sys_info: Refactor and fix a potential issue" (Andy Shevchenko)
fixes a build issue and does some cleanup in ib/sys_info.c
- "Implement mul_u64_u64_div_u64_roundup()" (David Laight)
enhances the 64-bit math code on behalf of a PWM driver and beefs up
the test module for these library functions
- "scripts/gdb/symbols: make BPF debug info available to GDB" (Ilya Leoshkevich)
makes BPF symbol names, sizes, and line numbers available to the GDB
debugger
- "Enable hung_task and lockup cases to dump system info on demand" (Feng Tang)
adds a sysctl which can be used to cause additional info dumping when
the hung-task and lockup detectors fire
- "lib/base64: add generic encoder/decoder, migrate users" (Kuan-Wei Chiu)
adds a general base64 encoder/decoder to lib/ and migrates several
users away from their private implementations
- "rbree: inline rb_first() and rb_last()" (Eric Dumazet)
makes TCP a little faster
- "liveupdate: Rework KHO for in-kernel users" (Pasha Tatashin)
reworks the KEXEC Handover interfaces in preparation for Live Update
Orchestrator (LUO), and possibly for other future clients
- "kho: simplify state machine and enable dynamic updates" (Pasha Tatashin)
increases the flexibility of KEXEC Handover. Also preparation for LUO
- "Live Update Orchestrator" (Pasha Tatashin)
is a major new feature targeted at cloud environments. Quoting the
cover letter:
This series introduces the Live Update Orchestrator, a kernel
subsystem designed to facilitate live kernel updates using a
kexec-based reboot. This capability is critical for cloud
environments, allowing hypervisors to be updated with minimal
downtime for running virtual machines. LUO achieves this by
preserving the state of selected resources, such as memory,
devices and their dependencies, across the kernel transition.
As a key feature, this series includes support for preserving
memfd file descriptors, which allows critical in-memory data, such
as guest RAM or any other large memory region, to be maintained in
RAM across the kexec reboot.
Mike Rappaport merits a mention here, for his extensive review and
testing work.
- "kexec: reorganize kexec and kdump sysfs" (Sourabh Jain)
moves the kexec and kdump sysfs entries from /sys/kernel/ to
/sys/kernel/kexec/ and adds back-compatibility symlinks which can
hopefully be removed one day
- "kho: fixes for vmalloc restoration" (Mike Rapoport)
fixes a BUG which was being hit during KHO restoration of vmalloc()
regions
* tag 'mm-nonmm-stable-2025-12-06-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (139 commits)
calibrate: update header inclusion
Reinstate "resource: avoid unnecessary lookups in find_next_iomem_res()"
vmcoreinfo: track and log recoverable hardware errors
kho: fix restoring of contiguous ranges of order-0 pages
kho: kho_restore_vmalloc: fix initialization of pages array
MAINTAINERS: TPM DEVICE DRIVER: update the W-tag
init: replace simple_strtoul with kstrtoul to improve lpj_setup
KHO: fix boot failure due to kmemleak access to non-PRESENT pages
Documentation/ABI: new kexec and kdump sysfs interface
Documentation/ABI: mark old kexec sysfs deprecated
kexec: move sysfs entries to /sys/kernel/kexec
test_kho: always print restore status
kho: free chunks using free_page() instead of kfree()
selftests/liveupdate: add kexec test for multiple and empty sessions
selftests/liveupdate: add simple kexec-based selftest for LUO
selftests/liveupdate: add userspace API selftests
docs: add documentation for memfd preservation via LUO
mm: memfd_luo: allow preserving memfd
liveupdate: luo_file: add private argument to store runtime state
mm: shmem: export some functions to internal.h
...
Pull vfs fixes from Christian Brauner:
- Fix a type conversion bug in the ipc subsystem
- Fix per-dentry timeout warning in autofs
- Drop the fd conversion from sockets
- Move assert from iput_not_last() to iput()
- Fix reversed check in filesystems_freeze_callback()
- Use proper uapi types for new struct delegation definitions
* tag 'vfs-6.19-rc1.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
vfs: use UAPI types for new struct delegation definition
mqueue: correct the type of ro to int
Revert "net/socket: convert sock_map_fd() to FD_ADD()"
autofs: fix per-dentry timeout warning
fs: assert on I_FREEING not being set in iput() and iput_not_last()
fs: PM: Fix reverse check in filesystems_freeze_callback()
Pull persistent dentry infrastructure and conversion from Al Viro:
"Some filesystems use a kinda-sorta controlled dentry refcount leak to
pin dentries of created objects in dcache (and undo it when removing
those). A reference is grabbed and not released, but it's not actually
_stored_ anywhere.
That works, but it's hard to follow and verify; among other things, we
have no way to tell _which_ of the increments is intended to be an
unpaired one. Worse, on removal we need to decide whether the
reference had already been dropped, which can be non-trivial if that
removal is on umount and we need to figure out if this dentry is
pinned due to e.g. unlink() not done. Usually that is handled by using
kill_litter_super() as ->kill_sb(), but there are open-coded special
cases of the same (consider e.g. /proc/self).
Things get simpler if we introduce a new dentry flag
(DCACHE_PERSISTENT) marking those "leaked" dentries. Having it set
claims responsibility for +1 in refcount.
The end result this series is aiming for:
- get these unbalanced dget() and dput() replaced with new primitives
that would, in addition to adjusting refcount, set and clear
persistency flag.
- instead of having kill_litter_super() mess with removing the
remaining "leaked" references (e.g. for all tmpfs files that hadn't
been removed prior to umount), have the regular
shrink_dcache_for_umount() strip DCACHE_PERSISTENT of all dentries,
dropping the corresponding reference if it had been set. After that
kill_litter_super() becomes an equivalent of kill_anon_super().
Doing that in a single step is not feasible - it would affect too many
places in too many filesystems. It has to be split into a series.
This work has really started early in 2024; quite a few preliminary
pieces have already gone into mainline. This chunk is finally getting
to the meat of that stuff - infrastructure and most of the conversions
to it.
Some pieces are still sitting in the local branches, but the bulk of
that stuff is here"
* tag 'pull-persistency' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
d_make_discardable(): warn if given a non-persistent dentry
kill securityfs_recursive_remove()
convert securityfs
get rid of kill_litter_super()
convert rust_binderfs
convert nfsctl
convert rpc_pipefs
convert hypfs
hypfs: swich hypfs_create_u64() to returning int
hypfs: switch hypfs_create_str() to returning int
hypfs: don't pin dentries twice
convert gadgetfs
gadgetfs: switch to simple_remove_by_name()
convert functionfs
functionfs: switch to simple_remove_by_name()
functionfs: fix the open/removal races
functionfs: need to cancel ->reset_work in ->kill_sb()
functionfs: don't bother with ffs->ref in ffs_data_{opened,closed}()
functionfs: don't abuse ffs_data_closed() on fs shutdown
convert selinuxfs
...
Pull fd prepare updates from Christian Brauner:
"This adds the FD_ADD() and FD_PREPARE() primitive. They simplify the
common pattern of get_unused_fd_flags() + create file + fd_install()
that is used extensively throughout the kernel and currently requires
cumbersome cleanup paths.
FD_ADD() - For simple cases where a file is installed immediately:
fd = FD_ADD(O_CLOEXEC, vfio_device_open_file(device));
if (fd < 0)
vfio_device_put_registration(device);
return fd;
FD_PREPARE() - For cases requiring access to the fd or file, or
additional work before publishing:
FD_PREPARE(fdf, O_CLOEXEC, sync_file->file);
if (fdf.err) {
fput(sync_file->file);
return fdf.err;
}
data.fence = fd_prepare_fd(fdf);
if (copy_to_user((void __user *)arg, &data, sizeof(data)))
return -EFAULT;
return fd_publish(fdf);
The primitives are centered around struct fd_prepare. FD_PREPARE()
encapsulates all allocation and cleanup logic and must be followed by
a call to fd_publish() which associates the fd with the file and
installs it into the caller's fdtable. If fd_publish() isn't called,
both are deallocated automatically. FD_ADD() is a shorthand that does
fd_publish() immediately and never exposes the struct to the caller.
I've implemented this in a way that it's compatible with the cleanup
infrastructure while also being usable separately. IOW, it's centered
around struct fd_prepare which is aliased to class_fd_prepare_t and so
we can make use of all the basica guard infrastructure"
* tag 'vfs-6.19-rc1.fd_prepare.fs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (42 commits)
io_uring: convert io_create_mock_file() to FD_PREPARE()
file: convert replace_fd() to FD_PREPARE()
vfio: convert vfio_group_ioctl_get_device_fd() to FD_ADD()
tty: convert ptm_open_peer() to FD_ADD()
ntsync: convert ntsync_obj_get_fd() to FD_PREPARE()
media: convert media_request_alloc() to FD_PREPARE()
hv: convert mshv_ioctl_create_partition() to FD_ADD()
gpio: convert linehandle_create() to FD_PREPARE()
pseries: port papr_rtas_setup_file_interface() to FD_ADD()
pseries: convert papr_platform_dump_create_handle() to FD_ADD()
spufs: convert spufs_gang_open() to FD_PREPARE()
papr-hvpipe: convert papr_hvpipe_dev_create_handle() to FD_PREPARE()
spufs: convert spufs_context_open() to FD_PREPARE()
net/socket: convert __sys_accept4_file() to FD_ADD()
net/socket: convert sock_map_fd() to FD_ADD()
net/kcm: convert kcm_ioctl() to FD_PREPARE()
net/handshake: convert handshake_nl_accept_doit() to FD_PREPARE()
secretmem: convert memfd_secret() to FD_ADD()
memfd: convert memfd_create() to FD_ADD()
bpf: convert bpf_token_create() to FD_PREPARE()
...
Pull directory locking updates from Christian Brauner:
"This contains the work to add centralized APIs for directory locking
operations.
This series is part of a larger effort to change directory operation
locking to allow multiple concurrent operations in a directory. The
ultimate goal is to lock the target dentry(s) rather than the whole
parent directory.
To help with changing the locking protocol, this series centralizes
locking and lookup in new helper functions. The helpers establish a
pattern where it is the dentry that is being locked and unlocked
(currently the lock is held on dentry->d_parent->d_inode, but that can
change in the future).
This also changes vfs_mkdir() to unlock the parent on failure, as well
as dput()ing the dentry. This allows end_creating() to only require
the target dentry (which may be IS_ERR() after vfs_mkdir()), not the
parent"
* tag 'vfs-6.19-rc1.directory.locking' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
nfsd: fix end_creating() conversion
VFS: introduce end_creating_keep()
VFS: change vfs_mkdir() to unlock on failure.
ecryptfs: use new start_creating/start_removing APIs
Add start_renaming_two_dentries()
VFS/ovl/smb: introduce start_renaming_dentry()
VFS/nfsd/ovl: introduce start_renaming() and end_renaming()
VFS: add start_creating_killable() and start_removing_killable()
VFS: introduce start_removing_dentry()
smb/server: use end_removing_noperm for for target of smb2_create_link()
VFS: introduce start_creating_noperm() and start_removing_noperm()
VFS/nfsd/cachefiles/ovl: introduce start_removing() and end_removing()
VFS/nfsd/cachefiles/ovl: add start_creating() and end_creating()
VFS: tidy up do_unlinkat()
VFS: introduce start_dirop() and end_dirop()
debugfs: rename end_creating() to debugfs_end_creating()
All modifications via normal VFS codepaths; just take care of making
persistent in in mqueue_create_attr() and discardable in mqueue_unlink()
and it doesn't need kill_litter_super() at all.
mqueue_unlink() side is best handled by having it call simple_unlink()
rather than duplicating its guts...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vfs_mkdir() already drops the reference to the dentry on failure but it
leaves the parent locked.
This complicates end_creating() which needs to unlock the parent even
though the dentry is no longer available.
If we change vfs_mkdir() to unlock on failure as well as releasing the
dentry, we can remove the "parent" arg from end_creating() and simplify
the rules for calling it.
Note that cachefiles_get_directory() can choose to substitute an error
instead of actually calling vfs_mkdir(), for fault injection. In that
case it needs to call end_creating(), just as vfs_mkdir() now does on
error.
ovl_create_real() will now unlock on error. So the conditional
end_creating() after the call is removed, and end_creating() is called
internally on error.
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Tested-by: syzbot@syzkaller.appspotmail.com
Signed-off-by: NeilBrown <neil@brown.name>
Link: https://patch.msgid.link/20251113002050.676694-15-neilb@ownmail.net
Signed-off-by: Christian Brauner <brauner@kernel.org>
xfs, fuse, ipc/mqueue need variants of start_creating or start_removing
which do not check permissions.
This patch adds _noperm versions of these functions.
Note that do_mq_open() was only calling mntget() so it could call
path_put() - it didn't really need an extra reference on the mnt.
Now it doesn't call mntget() and uses end_creating() which does
the dput() half of path_put().
Also mq_unlink() previously passed
d_inode(dentry->d_parent)
as the dir inode to vfs_unlink(). This is after locking
d_inode(mnt->mnt_root)
These two inodes are the same, but normally calls use the textual
parent.
So I've changes the vfs_unlink() call to be given d_inode(mnt->mnt_root).
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: NeilBrown <neil@brown.name>
--
changes since v2:
- dir arg passed to vfs_unlink() in mq_unlink() changed to match
the dir passed to lookup_noperm()
- restore assignment to path->mnt even though the mntget() is removed.
Link: https://patch.msgid.link/20251113002050.676694-7-neilb@ownmail.net
Tested-by: syzbot@syzkaller.appspotmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
If setup_mq_sysctls(ns) fails after mq_init_ns(ns) succeeds, the error
path skipped releasing the internal kernel mqueue mount kept in
ns->mq_mnt. That leaves the vfsmount/superblock referenced until final
namespace teardown, i.e. a resource leak on this rare failure edge.
Unwind it by calling mntput(ns->mq_mnt) before dropping user_ns and
freeing the IPC namespace. This mirrors the normal ordering used in
free_ipc_ns().
Link: https://lkml.kernel.org/r/20251021181341.670297-1-vlad_kulikov_c@pm.me
Signed-off-by: Vlad Kulikov <vlad_kulikov_c@pm.me>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ma Wupeng <mawupeng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pull namespace updates from Christian Brauner:
"This contains a larger set of changes around the generic namespace
infrastructure of the kernel.
Each specific namespace type (net, cgroup, mnt, ...) embedds a struct
ns_common which carries the reference count of the namespace and so
on.
We open-coded and cargo-culted so many quirks for each namespace type
that it just wasn't scalable anymore. So given there's a bunch of new
changes coming in that area I've started cleaning all of this up.
The core change is to make it possible to correctly initialize every
namespace uniformly and derive the correct initialization settings
from the type of the namespace such as namespace operations, namespace
type and so on. This leaves the new ns_common_init() function with a
single parameter which is the specific namespace type which derives
the correct parameters statically. This also means the compiler will
yell as soon as someone does something remotely fishy.
The ns_common_init() addition also allows us to remove ns_alloc_inum()
and drops any special-casing of the initial network namespace in the
network namespace initialization code that Linus complained about.
Another part is reworking the reference counting. The reference
counting was open-coded and copy-pasted for each namespace type even
though they all followed the same rules. This also removes all open
accesses to the reference count and makes it private and only uses a
very small set of dedicated helpers to manipulate them just like we do
for e.g., files.
In addition this generalizes the mount namespace iteration
infrastructure introduced a few cycles ago. As reminder, the vfs makes
it possible to iterate sequentially and bidirectionally through all
mount namespaces on the system or all mount namespaces that the caller
holds privilege over. This allow userspace to iterate over all mounts
in all mount namespaces using the listmount() and statmount() system
call.
Each mount namespace has a unique identifier for the lifetime of the
systems that is exposed to userspace. The network namespace also has a
unique identifier working exactly the same way. This extends the
concept to all other namespace types.
The new nstree type makes it possible to lookup namespaces purely by
their identifier and to walk the namespace list sequentially and
bidirectionally for all namespace types, allowing userspace to iterate
through all namespaces. Looking up namespaces in the namespace tree
works completely locklessly.
This also means we can move the mount namespace onto the generic
infrastructure and remove a bunch of code and members from struct
mnt_namespace itself.
There's a bunch of stuff coming on top of this in the future but for
now this uses the generic namespace tree to extend a concept
introduced first for pidfs a few cycles ago. For a while now we have
supported pidfs file handles for pidfds. This has proven to be very
useful.
This extends the concept to cover namespaces as well. It is possible
to encode and decode namespace file handles using the common
name_to_handle_at() and open_by_handle_at() apis.
As with pidfs file handles, namespace file handles are exhaustive,
meaning it is not required to actually hold a reference to nsfs in
able to decode aka open_by_handle_at() a namespace file handle.
Instead the FD_NSFS_ROOT constant can be passed which will let the
kernel grab a reference to the root of nsfs internally and thus decode
the file handle.
Namespaces file descriptors can already be derived from pidfds which
means they aren't subject to overmount protection bugs. IOW, it's
irrelevant if the caller would not have access to an appropriate
/proc/<pid>/ns/ directory as they could always just derive the
namespace based on a pidfd already.
It has the same advantage as pidfds. It's possible to reliably and for
the lifetime of the system refer to a namespace without pinning any
resources and to compare them trivially.
Permission checking is kept simple. If the caller is located in the
namespace the file handle refers to they are able to open it otherwise
they must hold privilege over the owning namespace of the relevant
namespace.
The namespace file handle layout is exposed as uapi and has a stable
and extensible format. For now it simply contains the namespace
identifier, the namespace type, and the inode number. The stable
format means that userspace may construct its own namespace file
handles without going through name_to_handle_at() as they are already
allowed for pidfs and cgroup file handles"
* tag 'namespace-6.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (65 commits)
ns: drop assert
ns: move ns type into struct ns_common
nstree: make struct ns_tree private
ns: add ns_debug()
ns: simplify ns_common_init() further
cgroup: add missing ns_common include
ns: use inode initializer for initial namespaces
selftests/namespaces: verify initial namespace inode numbers
ns: rename to __ns_ref
nsfs: port to ns_ref_*() helpers
net: port to ns_ref_*() helpers
uts: port to ns_ref_*() helpers
ipv4: use check_net()
net: use check_net()
net-sysfs: use check_net()
user: port to ns_ref_*() helpers
time: port to ns_ref_*() helpers
pid: port to ns_ref_*() helpers
ipc: port to ns_ref_*() helpers
cgroup: port to ns_ref_*() helpers
...
It's misplaced in struct proc_ns_operations and ns->ops might be NULL if
the namespace is compiled out but we still want to know the type of the
namespace for the initial namespace struct.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Simply derive the ns operations from the namespace type.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
And drop ns_free_inum(). Anything common that can be wasted centrally
should be wasted in the new common helper.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
There's a lot of information that namespace implementers don't need to
know about at all. Encapsulate this all in the initialization helper.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Every namespace type has a container_of(ns, <ns_type>, ns) static inline
function that is currently not exposed in the header. So we have a bunch
of places that open-code it via container_of(). Move it to the headers
so we can use it directly.
Reviewed-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
With the introduction of clone3 in commit 7f192e3cd3 ("fork: add
clone3") the effective bit width of clone_flags on all architectures was
increased from 32-bit to 64-bit, with a new type of u64 for the flags.
However, for most consumers of clone_flags the interface was not
changed from the previous type of unsigned long.
While this works fine as long as none of the new 64-bit flag bits
(CLONE_CLEAR_SIGHAND and CLONE_INTO_CGROUP) are evaluated, this is still
undesirable in terms of the principle of least surprise.
Thus, this commit fixes all relevant interfaces of callees to
sys_clone3/copy_process (excluding the architecture-specific
copy_thread) to consistently pass clone_flags as u64, so that
no truncation to 32-bit integers occurs on 32-bit architectures.
Signed-off-by: Simon Schuster <schuster.simon@siemens-energy.com>
Link: https://lore.kernel.org/20250901-nios2-implement-clone3-v2-2-53fcf5577d57@siemens-energy.com
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Pull mmap_prepare updates from Christian Brauner:
"Last cycle we introduce f_op->mmap_prepare() in c84bf6dd2b ("mm:
introduce new .mmap_prepare() file callback").
This is preferred to the existing f_op->mmap() hook as it does require
a VMA to be established yet, thus allowing the mmap logic to invoke
this hook far, far earlier, prior to inserting a VMA into the virtual
address space, or performing any other heavy handed operations.
This allows for much simpler unwinding on error, and for there to be a
single attempt at merging a VMA rather than having to possibly
reattempt a merge based on potentially altered VMA state.
Far more importantly, it prevents inappropriate manipulation of
incompletely initialised VMA state, which is something that has been
the cause of bugs and complexity in the past.
The intent is to gradually deprecate f_op->mmap, and in that vein this
series coverts the majority of file systems to using f_op->mmap_prepare.
Prerequisite steps are taken - firstly ensuring all checks for mmap
capabilities use the file_has_valid_mmap_hooks() helper rather than
directly checking for f_op->mmap (which is now not a valid check) and
secondly updating daxdev_mapping_supported() to not require a VMA
parameter to allow ext4 and xfs to be converted.
Commit bb666b7c27 ("mm: add mmap_prepare() compatibility layer for
nested file systems") handles the nasty edge-case of nested file
systems like overlayfs, which introduces a compatibility shim to allow
f_op->mmap_prepare() to be invoked from an f_op->mmap() callback.
This allows for nested filesystems to continue to function correctly
with all file systems regardless of which callback is used. Once we
finally convert all file systems, this shim can be removed.
As a result, ecryptfs, fuse, and overlayfs remain unaltered so they
can nest all other file systems.
We additionally do not update resctl - as this requires an update to
remap_pfn_range() (or an alternative to it) which we defer to a later
series, equally we do not update cramfs which needs a mixed mapping
insertion with the same issue, nor do we update procfs, hugetlbfs,
syfs or kernfs all of which require VMAs for internal state and hooks.
We shall return to all of these later"
* tag 'vfs-6.17-rc1.mmap_prepare' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
doc: update porting, vfs documentation to describe mmap_prepare()
fs: replace mmap hook with .mmap_prepare for simple mappings
fs: convert most other generic_file_*mmap() users to .mmap_prepare()
fs: convert simple use of generic_file_*_mmap() to .mmap_prepare()
mm/filemap: introduce generic_file_*_mmap_prepare() helpers
fs/xfs: transition from deprecated .mmap hook to .mmap_prepare
fs/ext4: transition from deprecated .mmap hook to .mmap_prepare
fs/dax: make it possible to check dev dax support without a VMA
fs: consistently use can_mmap_file() helper
mm/nommu: use file_has_valid_mmap_hooks() helper
mm: rename call_mmap/mmap_prepare to vfs_mmap/mmap_prepare
Pull vfs mount updates from Al Viro:
- mount hash conflicts rudiments are gone now - we do not allow
multiple mounts with the same parent/mountpoint to be hashed at the
same time.
- 'struct mount' changes:
- mnt_umounting is gone
- mnt_slave_list/mnt_slave is an hlist now
- overmounts are kept track of by explicit pointer in mount
- a bunch of flags moved out of mnt_flags to a new field, with
only namespace_sem for protection
- mnt_expiry is protected by mount_lock now (instead of
namespace_sem)
- MNT_LOCKED is used only for mounts that need to remain attached
to their parents to prevent mountpoint exposure - no more
overloading it for absolute roots
- all mnt_list uses are transient now - it's used only to
represent temporary sets during umount_tree()
- mount refcounting change: children no longer pin parents for any
mounts, whether they'd passed through umount_tree() or not
- 'struct mountpoint' changes:
- refcount is no more; what matters is ->m_list emptiness
- instead of temporary bumping the refcount, we insert a new
object (pinned_mountpoint) into ->m_list
- new calling conventions for lock_mount() and friends
- do_move_mount()/attach_recursive_mnt() seriously cleaned up
- globals in fs/pnode.c are gone
- propagate_mnt(), change_mnt_propagation() and propagate_umount()
cleaned up (in the last case - pretty much completely rewritten).
- freeing of emptied mnt_namespace is done in namespace_unlock(). For
one thing, there are subtle ordering requirements there; for another
it simplifies cleanups.
- assorted cleanups
- restore the machinery for long-term mounts from accumulated bitrot.
This is going to get a followup come next cycle, when the change of
vfs_fs_parse_string() calling conventions goes into -next
* tag 'pull-mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (48 commits)
statmount_mnt_basic(): simplify the logics for group id
invent_group_ids(): zero ->mnt_group_id always implies !IS_MNT_SHARED()
get rid of CL_SHARE_TO_SLAVE
take freeing of emptied mnt_namespace to namespace_unlock()
copy_tree(): don't link the mounts via mnt_list
change_mnt_propagation(): move ->mnt_master assignment into MS_SLAVE case
mnt_slave_list/mnt_slave: turn into hlist_head/hlist_node
turn do_make_slave() into transfer_propagation()
do_make_slave(): choose new master sanely
change_mnt_propagation(): do_make_slave() is a no-op unless IS_MNT_SHARED()
change_mnt_propagation() cleanups, step 1
propagate_mnt(): fix comment and convert to kernel-doc, while we are at it
propagate_mnt(): get rid of last_dest
fs/pnode.c: get rid of globals
propagate_one(): fold into the sole caller
propagate_one(): separate the "what should be the master for this copy" part
propagate_one(): separate the "do we need secondary here?" logics
propagate_mnt(): handle all peer groups in the same loop
propagate_one(): get rid of dest_master
mount: separate the flags accessed only under namespace_sem
...
Original rationale for those had been the reduced cost of mntput()
for the stuff that is mounted somewhere. Mount refcount increments and
decrements are frequent; what's worse, they tend to concentrate on the
same instances and cacheline pingpong is quite noticable.
As the result, mount refcounts are per-cpu; that allows a very cheap
increment. Plain decrement would be just as easy, but decrement-and-test
is anything but (we need to add the components up, with exclusion against
possible increment-from-zero, etc.).
Fortunately, there is a very common case where we can tell that decrement
won't be the final one - if the thing we are dropping is currently
mounted somewhere. We have an RCU delay between the removal from mount
tree and dropping the reference that used to pin it there, so we can
just take rcu_read_lock() and check if the victim is mounted somewhere.
If it is, we can go ahead and decrement without and further checks -
the reference we are dropping is not the last one. If it isn't, we
get all the fun with locking, carefully adding up components, etc.,
but the majority of refcount decrements end up taking the fast path.
There is a major exception, though - pipes and sockets. Those live
on the internal filesystems that are not going to be mounted anywhere.
They are not going to be _un_mounted, of course, so having to take the
slow path every time a pipe or socket gets closed is really obnoxious.
Solution had been to mark them as long-lived ones - essentially faking
"they are mounted somewhere" indicator.
With minor modification that works even for ones that do eventually get
dropped - all it takes is making sure we have an RCU delay between
clearing the "mounted somewhere" indicator and dropping the reference.
There are some additional twists (if you want to drop a dozen of such
internal mounts, you'd be better off with clearing the indicator on
all of them, doing an RCU delay once, then dropping the references),
but in the basic form it had been
* use kern_mount() if you want your internal mount to be
a long-term one.
* use kern_unmount() to undo that.
Unfortunately, the things did rot a bit during the mount API reshuffling.
In several cases we have lost the "fake the indicator" part; kern_unmount()
on the unmount side remained (it doesn't warn if you use it on a mount
without the indicator), but all benefits regaring mntput() cost had been
lost.
To get rid of that bitrot, let's add a new helper that would work
with fs_context-based API: fc_mount_longterm(). It's a counterpart
of fc_mount() that does, on success, mark its result as long-term.
It must be paired with kern_unmount() or equivalents.
Converted:
1) mqueue (it used to use kern_mount_data() and the umount side
is still as it used to be)
2) hugetlbfs (used to use kern_mount_data(), internal mount is
never unmounted in this one)
3) i915 gemfs (used to be kern_mount() + manual remount to set
options, still uses kern_unmount() on umount side)
4) v3d gemfs (copied from i915)
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The call_mmap() function violates the existing convention in
include/linux/fs.h whereby invocations of virtual file system hooks is
performed by functions prefixed with vfs_xxx().
Correct this by renaming call_mmap() to vfs_mmap(). This also avoids
confusion as to the fact that f_op->mmap_prepare may be invoked here.
Also rename __call_mmap_prepare() function to vfs_mmap_prepare() and adjust
to accept a file parameter, this is useful later for nested file systems.
Finally, fix up the VMA userland tests and ensure the mmap_prepare -> mmap
shim is implemented there.
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Link: https://lore.kernel.org/8d389f4994fa736aa8f9172bef8533c10a9e9011.1750099179.git.lorenzo.stoakes@oracle.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
makes simple_lookup() slightly cheaper there - no need for
simple_lookup() to set the flag and we want it on everything
on those anyway.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull non-MM updates from Andrew Morton:
- "hung_task: extend blocking task stacktrace dump to semaphore" from
Lance Yang enhances the hung task detector.
The detector presently dumps the blocking tasks's stack when it is
blocked on a mutex. Lance's series extends this to semaphores
- "nilfs2: improve sanity checks in dirty state propagation" from
Wentao Liang addresses a couple of minor flaws in nilfs2
- "scripts/gdb: Fixes related to lx_per_cpu()" from Illia Ostapyshyn
fixes a couple of issues in the gdb scripts
- "Support kdump with LUKS encryption by reusing LUKS volume keys" from
Coiby Xu addresses a usability problem with kdump.
When the dump device is LUKS-encrypted, the kdump kernel may not have
the keys to the encrypted filesystem. A full writeup of this is in
the series [0/N] cover letter
- "sysfs: add counters for lockups and stalls" from Max Kellermann adds
/sys/kernel/hardlockup_count and /sys/kernel/hardlockup_count and
/sys/kernel/rcu_stall_count
- "fork: Page operation cleanups in the fork code" from Pasha Tatashin
implements a number of code cleanups in fork.c
- "scripts/gdb/symbols: determine KASLR offset on s390 during early
boot" from Ilya Leoshkevich fixes some s390 issues in the gdb
scripts
* tag 'mm-nonmm-stable-2025-05-31-15-28' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (67 commits)
llist: make llist_add_batch() a static inline
delayacct: remove redundant code and adjust indentation
squashfs: add optional full compressed block caching
crash_dump, nvme: select CONFIGFS_FS as built-in
scripts/gdb/symbols: determine KASLR offset on s390 during early boot
scripts/gdb/symbols: factor out pagination_off()
scripts/gdb/symbols: factor out get_vmlinux()
kernel/panic.c: format kernel-doc comments
mailmap: update and consolidate Casey Connolly's name and email
nilfs2: remove wbc->for_reclaim handling
fork: define a local GFP_VMAP_STACK
fork: check charging success before zeroing stack
fork: clean-up naming of vm_stack/vm_struct variables in vmap stacks code
fork: clean-up ifdef logic around stack allocation
kernel/rcu/tree_stall: add /sys/kernel/rcu_stall_count
kernel/watchdog: add /sys/kernel/{hard,soft}lockup_count
x86/crash: make the page that stores the dm crypt keys inaccessible
x86/crash: pass dm crypt keys to kdump kernel
Revert "x86/mm: Remove unused __set_memory_prot()"
crash_dump: retrieve dm crypt keys in kdump kernel
...
The lookup_one_len family of functions is (now) only used internally by
a filesystem on itself either
- in a context where permission checking is irrelevant such as by a
virtual filesystem populating itself, or xfs accessing its ORPHANAGE
or dquota accessing the quota file; or
- in a context where a permission check (MAY_EXEC on the parent) has just
been performed such as a network filesystem finding in "silly-rename"
file in the same directory. This is also the context after the
_parentat() functions where currently lookup_one_qstr_excl() is used.
So the permission check is pointless.
The name "one_len" is unhelpful in understanding the purpose of these
functions and should be changed. Most of the callers pass the len as
"strlen()" so using a qstr and QSTR() can simplify the code.
This patch renames these functions (include lookup_positive_unlocked()
which is part of the family despite the name) to have a name based on
"lookup_noperm". They are changed to receive a 'struct qstr' instead
of separate name and len. In a few cases the use of QSTR() results in a
new call to strlen().
try_lookup_noperm() takes a pointer to a qstr instead of the whole
qstr. This is consistent with d_hash_and_lookup() (which is nearly
identical) and useful for lookup_noperm_unlocked().
The new lookup_noperm_common() doesn't take a qstr yet. That will be
tidied up in a subsequent patch.
Signed-off-by: NeilBrown <neil@brown.name>
Link: https://lore.kernel.org/r/20250319031545.2999807-5-neil@brown.name
Signed-off-by: Christian Brauner <brauner@kernel.org>
Add the const qualifier to all the ctl_tables in the tree except for
watchdog_hardlockup_sysctl, memory_allocation_profiling_sysctls,
loadpin_sysctl_table and the ones calling register_net_sysctl (./net,
drivers/inifiniband dirs). These are special cases as they use a
registration function with a non-const qualified ctl_table argument or
modify the arrays before passing them on to the registration function.
Constifying ctl_table structs will prevent the modification of
proc_handler function pointers as the arrays would reside in .rodata.
This is made possible after commit 78eb4ea25c ("sysctl: treewide:
constify the ctl_table argument of proc_handlers") constified all the
proc_handlers.
Created this by running an spatch followed by a sed command:
Spatch:
virtual patch
@
depends on !(file in "net")
disable optional_qualifier
@
identifier table_name != {
watchdog_hardlockup_sysctl,
iwcm_ctl_table,
ucma_ctl_table,
memory_allocation_profiling_sysctls,
loadpin_sysctl_table
};
@@
+ const
struct ctl_table table_name [] = { ... };
sed:
sed --in-place \
-e "s/struct ctl_table .table = &uts_kern/const struct ctl_table *table = \&uts_kern/" \
kernel/utsname_sysctl.c
Reviewed-by: Song Liu <song@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> # for kernel/trace/
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> # SCSI
Reviewed-by: Darrick J. Wong <djwong@kernel.org> # xfs
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Corey Minyard <cminyard@mvista.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Bill O'Donnell <bodonnel@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Ashutosh Dixit <ashutosh.dixit@intel.com>
Acked-by: Anna Schumaker <anna.schumaker@oracle.com>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
Move the function descriptive comments so that they conform to
kernel-doc format, eliminating the kernel-doc warnings.
util.c:618: warning: missing initial short description on line:
* ipc_obtain_object_idr
util.c:640: warning: missing initial short description on line:
* ipc_obtain_object_check
Link: https://lkml.kernel.org/r/20250111062905.910576-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pull non-MM updates from Andrew Morton:
- The series "resource: A couple of cleanups" from Andy Shevchenko
performs some cleanups in the resource management code
- The series "Improve the copy of task comm" from Yafang Shao addresses
possible race-induced overflows in the management of
task_struct.comm[]
- The series "Remove unnecessary header includes from
{tools/}lib/list_sort.c" from Kuan-Wei Chiu adds some cleanups and a
small fix to the list_sort library code and to its selftest
- The series "Enhance min heap API with non-inline functions and
optimizations" also from Kuan-Wei Chiu optimizes and cleans up the
min_heap library code
- The series "nilfs2: Finish folio conversion" from Ryusuke Konishi
finishes off nilfs2's folioification
- The series "add detect count for hung tasks" from Lance Yang adds
more userspace visibility into the hung-task detector's activity
- Apart from that, singelton patches in many places - please see the
individual changelogs for details
* tag 'mm-nonmm-stable-2024-11-24-02-05' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (71 commits)
gdb: lx-symbols: do not error out on monolithic build
kernel/reboot: replace sprintf() with sysfs_emit()
lib: util_macros_kunit: add kunit test for util_macros.h
util_macros.h: fix/rework find_closest() macros
Improve consistency of '#error' directive messages
ocfs2: fix uninitialized value in ocfs2_file_read_iter()
hung_task: add docs for hung_task_detect_count
hung_task: add detect count for hung tasks
dma-buf: use atomic64_inc_return() in dma_buf_getfile()
fs/proc/kcore.c: fix coccinelle reported ERROR instances
resource: avoid unnecessary resource tree walking in __region_intersects()
ocfs2: remove unused errmsg function and table
ocfs2: cluster: fix a typo
lib/scatterlist: use sg_phys() helper
checkpatch: always parse orig_commit in fixes tag
nilfs2: convert metadata aops from writepage to writepages
nilfs2: convert nilfs_recovery_copy_block() to take a folio
nilfs2: convert nilfs_page_count_clean_buffers() to take a folio
nilfs2: remove nilfs_writepage
nilfs2: convert checkpoint file to be folio-based
...
all failure exits prior to fdget() leave the scope, all matching fdput()
are immediately followed by leaving the scope.
[xfs_ioc_commit_range() chunk moved here as well]
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only failure exit before fdget() is a return, the only thing done
after fdput() is transposable with it.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
cleanup is convoluted enough as it is; it's easier to have early
failure outs do explicit kfree_skb(nc), rather than going to
contortions needed to reuse the cleanup from late failures.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
the only call site (in do_mq_notify()) obtains the argument
from an immediately preceding fdget() and it is immediately
followed by fdput(); might as well just replace it with
a variant that would take a descriptor instead of struct file *
and have file lookups handled inside that function.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull 'struct fd' updates from Al Viro:
"Just the 'struct fd' layout change, with conversion to accessor
helpers"
* tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
add struct fd constructors, get rid of __to_fd()
struct fd: representation change
introduce fd_file(), convert all accessors to it.
For any changes of struct fd representation we need to
turn existing accesses to fields into calls of wrappers.
Accesses to struct fd::flags are very few (3 in linux/file.h,
1 in net/socket.c, 3 in fs/overlayfs/file.c and 3 more in
explicit initializers).
Those can be dealt with in the commit converting to
new layout; accesses to struct fd::file are too many for that.
This commit converts (almost) all of f.file to
fd_file(f). It's not entirely mechanical ('file' is used as
a member name more than just in struct fd) and it does not
even attempt to distinguish the uses in pointer context from
those in boolean context; the latter will be eventually turned
into a separate helper (fd_empty()).
NOTE: mass conversion to fd_empty(), tempting as it
might be, is a bad idea; better do that piecewise in commit
that convert from fdget...() to CLASS(...).
[conflicts in fs/fhandle.c, kernel/bpf/syscall.c, mm/memcontrol.c
caught by git; fs/stat.c one got caught by git grep]
[fs/xattr.c conflict]
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.
This patch has been generated by the following coccinelle script:
```
virtual patch
@r1@
identifier ctl, write, buffer, lenp, ppos;
identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos);
@r2@
identifier func, ctl, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos)
{ ... }
@r3@
identifier func;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int , void *, size_t *, loff_t *);
@r4@
identifier func, ctl;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int , void *, size_t *, loff_t *);
@r5@
identifier func, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int write, void *buffer, size_t *lenp, loff_t *ppos);
```
* Code formatting was adjusted in xfs_sysctl.c to comply with code
conventions. The xfs_stats_clear_proc_handler,
xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
adjusted.
* The ctl_table argument in proc_watchdog_common was const qualified.
This is called from a proc_handler itself and is calling back into
another proc_handler, making it necessary to change it as part of the
proc_handler migration.
Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
Pull slab updates from Vlastimil Babka:
"The most prominent change this time is the kmem_buckets based
hardening of kmalloc() allocations from Kees Cook.
We have also extended the kmalloc() alignment guarantees for
non-power-of-two sizes in a way that benefits rust.
The rest are various cleanups and non-critical fixups.
- Dedicated bucket allocator (Kees Cook)
This series [1] enhances the probabilistic defense against heap
spraying/grooming of CONFIG_RANDOM_KMALLOC_CACHES from last year.
kmalloc() users that are known to be useful for exploits can get
completely separate set of kmalloc caches that can't be shared with
other users. The first converted users are alloc_msg() and
memdup_user().
The hardening is enabled by CONFIG_SLAB_BUCKETS.
- Extended kmalloc() alignment guarantees (Vlastimil Babka)
For years now we have guaranteed natural alignment for power-of-two
allocations, but nothing was defined for other sizes (in practice,
we have two such buckets, kmalloc-96 and kmalloc-192).
To avoid unnecessary padding in the rust layer due to its alignment
rules, extend the guarantee so that the alignment is at least the
largest power-of-two divisor of the requested size.
This fits what rust needs, is a superset of the existing
power-of-two guarantee, and does not in practice change the layout
(and thus does not add overhead due to padding) of the kmalloc-96
and kmalloc-192 caches, unless slab debugging is enabled for them.
- Cleanups and non-critical fixups (Chengming Zhou, Suren
Baghdasaryan, Matthew Willcox, Alex Shi, and Vlastimil Babka)
Various tweaks related to the new alloc profiling code, folio
conversion, debugging and more leftovers after SLAB"
Link: https://lore.kernel.org/all/20240701190152.it.631-kees@kernel.org/ [1]
* tag 'slab-for-6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
mm/memcg: alignment memcg_data define condition
mm, slab: move prepare_slab_obj_exts_hook under CONFIG_MEM_ALLOC_PROFILING
mm, slab: move allocation tagging code in the alloc path into a hook
mm/util: Use dedicated slab buckets for memdup_user()
ipc, msg: Use dedicated slab buckets for alloc_msg()
mm/slab: Introduce kmem_buckets_create() and family
mm/slab: Introduce kvmalloc_buckets_node() that can take kmem_buckets argument
mm/slab: Plumb kmem_buckets into __do_kmalloc_node()
mm/slab: Introduce kmem_buckets typedef
slab, rust: extend kmalloc() alignment guarantees to remove Rust padding
slab: delete useless RED_INACTIVE and RED_ACTIVE
slab: don't put freepointer outside of object if only orig_size
slab: make check_object() more consistent
mm: Reduce the number of slab->folio casts
mm, slab: don't wrap internal functions with alloc_hooks()