drm/vmwgfx: Implement dma_fence_ops properly

vmwgfx's fencing predates dma_fence and as a result dma_fence_ops was never
properly implemented, especially with respect to enabling signaling.

Because of this dma_fence callbacks don't work properly. This change
implements enable_signaling properly so that dma_fence callbacks now
work as expected.

It also removes vmwgfx's custom implementation of fence callbacks
and removes vmwgfx's custom dma_fence_ops::wait function which is no
longer necessary now that enable_signaling works.

Signed-off-by: Ian Forbes <ian.forbes@broadcom.com>
Signed-off-by: Zack Rusin <zack.rusin@broadcom.com>
Link: https://lore.kernel.org/r/20250530183510.733175-2-ian.forbes@broadcom.com
This commit is contained in:
Ian Forbes
2025-05-30 13:35:09 -05:00
committed by Zack Rusin
parent c82f55f4aa
commit db6a94b263
5 changed files with 97 additions and 500 deletions

View File

@@ -1006,14 +1006,14 @@ extern int vmw_fallback_wait(struct vmw_private *dev_priv,
uint32_t seqno,
bool interruptible,
unsigned long timeout);
extern void vmw_seqno_waiter_add(struct vmw_private *dev_priv);
extern void vmw_seqno_waiter_remove(struct vmw_private *dev_priv);
extern void vmw_goal_waiter_add(struct vmw_private *dev_priv);
extern void vmw_goal_waiter_remove(struct vmw_private *dev_priv);
extern void vmw_generic_waiter_add(struct vmw_private *dev_priv, u32 flag,
int *waiter_count);
extern void vmw_generic_waiter_remove(struct vmw_private *dev_priv,
u32 flag, int *waiter_count);
bool vmw_seqno_waiter_add(struct vmw_private *dev_priv);
bool vmw_seqno_waiter_remove(struct vmw_private *dev_priv);
bool vmw_goal_waiter_add(struct vmw_private *dev_priv);
bool vmw_goal_waiter_remove(struct vmw_private *dev_priv);
bool vmw_generic_waiter_add(struct vmw_private *dev_priv, u32 flag,
int *waiter_count);
bool vmw_generic_waiter_remove(struct vmw_private *dev_priv,
u32 flag, int *waiter_count);
/**
* Kernel modesetting - vmwgfx_kms.c

View File

@@ -4067,23 +4067,6 @@ static int vmw_execbuf_tie_context(struct vmw_private *dev_priv,
return 0;
}
/*
* DMA fence callback to remove a seqno_waiter
*/
struct seqno_waiter_rm_context {
struct dma_fence_cb base;
struct vmw_private *dev_priv;
};
static void seqno_waiter_rm_cb(struct dma_fence *f, struct dma_fence_cb *cb)
{
struct seqno_waiter_rm_context *ctx =
container_of(cb, struct seqno_waiter_rm_context, base);
vmw_seqno_waiter_remove(ctx->dev_priv);
kfree(ctx);
}
int vmw_execbuf_process(struct drm_file *file_priv,
struct vmw_private *dev_priv,
void __user *user_commands, void *kernel_commands,
@@ -4264,15 +4247,6 @@ int vmw_execbuf_process(struct drm_file *file_priv,
} else {
/* Link the fence with the FD created earlier */
fd_install(out_fence_fd, sync_file->file);
struct seqno_waiter_rm_context *ctx =
kmalloc(sizeof(*ctx), GFP_KERNEL);
ctx->dev_priv = dev_priv;
vmw_seqno_waiter_add(dev_priv);
if (dma_fence_add_callback(&fence->base, &ctx->base,
seqno_waiter_rm_cb) < 0) {
vmw_seqno_waiter_remove(dev_priv);
kfree(ctx);
}
}
}

View File

@@ -1,32 +1,11 @@
// SPDX-License-Identifier: GPL-2.0 OR MIT
/**************************************************************************
*
* Copyright 2011-2023 VMware, Inc., Palo Alto, CA., USA
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
* Copyright (c) 2009-2025 Broadcom. All Rights Reserved. The term
* Broadcom refers to Broadcom Inc. and/or its subsidiaries.
*
**************************************************************************/
#include <linux/sched/signal.h>
#include "vmwgfx_drv.h"
#define VMW_FENCE_WRAP (1 << 31)
@@ -35,14 +14,7 @@ struct vmw_fence_manager {
struct vmw_private *dev_priv;
spinlock_t lock;
struct list_head fence_list;
struct work_struct work;
bool fifo_down;
struct list_head cleanup_list;
uint32_t pending_actions[VMW_ACTION_MAX];
struct mutex goal_irq_mutex;
bool goal_irq_on; /* Protected by @goal_irq_mutex */
bool seqno_valid; /* Protected by @lock, and may not be set to true
without the @goal_irq_mutex held. */
u64 ctx;
};
@@ -52,12 +24,10 @@ struct vmw_user_fence {
};
/**
* struct vmw_event_fence_action - fence action that delivers a drm event.
* struct vmw_event_fence_action - fence callback that delivers a DRM event.
*
* @action: A struct vmw_fence_action to hook up to a fence.
* @base: For use with dma_fence_add_callback(...)
* @event: A pointer to the pending event.
* @fence: A referenced pointer to the fence to keep it alive while @action
* hangs on it.
* @dev: Pointer to a struct drm_device so we can access the event stuff.
* @tv_sec: If non-null, the variable pointed to will be assigned
* current time tv_sec val when the fence signals.
@@ -65,10 +35,9 @@ struct vmw_user_fence {
* be assigned the current time tv_usec val when the fence signals.
*/
struct vmw_event_fence_action {
struct vmw_fence_action action;
struct dma_fence_cb base;
struct drm_pending_event *event;
struct vmw_fence_obj *fence;
struct drm_device *dev;
uint32_t *tv_sec;
@@ -81,44 +50,6 @@ fman_from_fence(struct vmw_fence_obj *fence)
return container_of(fence->base.lock, struct vmw_fence_manager, lock);
}
static u32 vmw_fence_goal_read(struct vmw_private *vmw)
{
if ((vmw->capabilities2 & SVGA_CAP2_EXTRA_REGS) != 0)
return vmw_read(vmw, SVGA_REG_FENCE_GOAL);
else
return vmw_fifo_mem_read(vmw, SVGA_FIFO_FENCE_GOAL);
}
static void vmw_fence_goal_write(struct vmw_private *vmw, u32 value)
{
if ((vmw->capabilities2 & SVGA_CAP2_EXTRA_REGS) != 0)
vmw_write(vmw, SVGA_REG_FENCE_GOAL, value);
else
vmw_fifo_mem_write(vmw, SVGA_FIFO_FENCE_GOAL, value);
}
/*
* Note on fencing subsystem usage of irqs:
* Typically the vmw_fences_update function is called
*
* a) When a new fence seqno has been submitted by the fifo code.
* b) On-demand when we have waiters. Sleeping waiters will switch on the
* ANY_FENCE irq and call vmw_fences_update function each time an ANY_FENCE
* irq is received. When the last fence waiter is gone, that IRQ is masked
* away.
*
* In situations where there are no waiters and we don't submit any new fences,
* fence objects may not be signaled. This is perfectly OK, since there are
* no consumers of the signaled data, but that is NOT ok when there are fence
* actions attached to a fence. The fencing subsystem then makes use of the
* FENCE_GOAL irq and sets the fence goal seqno to that of the next fence
* which has an action attached, and each time vmw_fences_update is called,
* the subsystem makes sure the fence goal seqno is updated.
*
* The fence goal seqno irq is on as long as there are unsignaled fence
* objects with actions attached to them.
*/
static void vmw_fence_obj_destroy(struct dma_fence *f)
{
struct vmw_fence_obj *fence =
@@ -126,8 +57,21 @@ static void vmw_fence_obj_destroy(struct dma_fence *f)
struct vmw_fence_manager *fman = fman_from_fence(fence);
if (!list_empty(&fence->head)) {
/* The fence manager still has an implicit reference to this
* fence via the fence list if head is set. Because the lock is
* required to be held when the fence manager updates the fence
* list either the fence will have been removed after we get
* the lock below or we can safely remove it and the fence
* manager will never see it. This implies the fence is being
* deleted without being signaled which is dubious but valid
* if there are no callbacks. The dma_fence code that calls
* this hook will warn about deleted unsignaled with callbacks
* so no need to warn again here.
*/
spin_lock(&fman->lock);
list_del_init(&fence->head);
if (fence->waiter_added)
vmw_seqno_waiter_remove(fman->dev_priv);
spin_unlock(&fman->lock);
}
fence->destroy(fence);
@@ -143,165 +87,46 @@ static const char *vmw_fence_get_timeline_name(struct dma_fence *f)
return "svga";
}
/* When we toggle signaling for the SVGA device there is a race period from
* the time we first read the fence seqno to the time we enable interrupts.
* If we miss the interrupt for a fence during this period its likely the driver
* will stall. As a result we need to re-read the seqno after interrupts are
* enabled. If interrupts were already enabled we just increment the number of
* seqno waiters.
*/
static bool vmw_fence_enable_signaling(struct dma_fence *f)
{
u32 seqno;
struct vmw_fence_obj *fence =
container_of(f, struct vmw_fence_obj, base);
struct vmw_fence_manager *fman = fman_from_fence(fence);
struct vmw_private *dev_priv = fman->dev_priv;
u32 seqno = vmw_fence_read(dev_priv);
if (seqno - fence->base.seqno < VMW_FENCE_WRAP)
check_for_race:
seqno = vmw_fence_read(dev_priv);
if (seqno - fence->base.seqno < VMW_FENCE_WRAP) {
if (fence->waiter_added) {
vmw_seqno_waiter_remove(dev_priv);
fence->waiter_added = false;
}
return false;
} else if (!fence->waiter_added) {
fence->waiter_added = true;
if (vmw_seqno_waiter_add(dev_priv))
goto check_for_race;
}
return true;
}
struct vmwgfx_wait_cb {
struct dma_fence_cb base;
struct task_struct *task;
};
static void
vmwgfx_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
{
struct vmwgfx_wait_cb *wait =
container_of(cb, struct vmwgfx_wait_cb, base);
wake_up_process(wait->task);
}
static u32 __vmw_fences_update(struct vmw_fence_manager *fman);
static long vmw_fence_wait(struct dma_fence *f, bool intr, signed long timeout)
{
struct vmw_fence_obj *fence =
container_of(f, struct vmw_fence_obj, base);
struct vmw_fence_manager *fman = fman_from_fence(fence);
struct vmw_private *dev_priv = fman->dev_priv;
struct vmwgfx_wait_cb cb;
long ret = timeout;
if (likely(vmw_fence_obj_signaled(fence)))
return timeout;
vmw_seqno_waiter_add(dev_priv);
spin_lock(f->lock);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags))
goto out;
if (intr && signal_pending(current)) {
ret = -ERESTARTSYS;
goto out;
}
cb.base.func = vmwgfx_wait_cb;
cb.task = current;
list_add(&cb.base.node, &f->cb_list);
for (;;) {
__vmw_fences_update(fman);
/*
* We can use the barrier free __set_current_state() since
* DMA_FENCE_FLAG_SIGNALED_BIT + wakeup is protected by the
* fence spinlock.
*/
if (intr)
__set_current_state(TASK_INTERRUPTIBLE);
else
__set_current_state(TASK_UNINTERRUPTIBLE);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) {
if (ret == 0 && timeout > 0)
ret = 1;
break;
}
if (intr && signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
if (ret == 0)
break;
spin_unlock(f->lock);
ret = schedule_timeout(ret);
spin_lock(f->lock);
}
__set_current_state(TASK_RUNNING);
if (!list_empty(&cb.base.node))
list_del(&cb.base.node);
out:
spin_unlock(f->lock);
vmw_seqno_waiter_remove(dev_priv);
return ret;
}
static const struct dma_fence_ops vmw_fence_ops = {
.get_driver_name = vmw_fence_get_driver_name,
.get_timeline_name = vmw_fence_get_timeline_name,
.enable_signaling = vmw_fence_enable_signaling,
.wait = vmw_fence_wait,
.release = vmw_fence_obj_destroy,
};
/*
* Execute signal actions on fences recently signaled.
* This is done from a workqueue so we don't have to execute
* signal actions from atomic context.
*/
static void vmw_fence_work_func(struct work_struct *work)
{
struct vmw_fence_manager *fman =
container_of(work, struct vmw_fence_manager, work);
struct list_head list;
struct vmw_fence_action *action, *next_action;
bool seqno_valid;
do {
INIT_LIST_HEAD(&list);
mutex_lock(&fman->goal_irq_mutex);
spin_lock(&fman->lock);
list_splice_init(&fman->cleanup_list, &list);
seqno_valid = fman->seqno_valid;
spin_unlock(&fman->lock);
if (!seqno_valid && fman->goal_irq_on) {
fman->goal_irq_on = false;
vmw_goal_waiter_remove(fman->dev_priv);
}
mutex_unlock(&fman->goal_irq_mutex);
if (list_empty(&list))
return;
/*
* At this point, only we should be able to manipulate the
* list heads of the actions we have on the private list.
* hence fman::lock not held.
*/
list_for_each_entry_safe(action, next_action, &list, head) {
list_del_init(&action->head);
if (action->cleanup)
action->cleanup(action);
}
} while (1);
}
struct vmw_fence_manager *vmw_fence_manager_init(struct vmw_private *dev_priv)
{
struct vmw_fence_manager *fman = kzalloc(sizeof(*fman), GFP_KERNEL);
@@ -312,10 +137,7 @@ struct vmw_fence_manager *vmw_fence_manager_init(struct vmw_private *dev_priv)
fman->dev_priv = dev_priv;
spin_lock_init(&fman->lock);
INIT_LIST_HEAD(&fman->fence_list);
INIT_LIST_HEAD(&fman->cleanup_list);
INIT_WORK(&fman->work, &vmw_fence_work_func);
fman->fifo_down = true;
mutex_init(&fman->goal_irq_mutex);
fman->ctx = dma_fence_context_alloc(1);
return fman;
@@ -325,11 +147,8 @@ void vmw_fence_manager_takedown(struct vmw_fence_manager *fman)
{
bool lists_empty;
(void) cancel_work_sync(&fman->work);
spin_lock(&fman->lock);
lists_empty = list_empty(&fman->fence_list) &&
list_empty(&fman->cleanup_list);
lists_empty = list_empty(&fman->fence_list);
spin_unlock(&fman->lock);
BUG_ON(!lists_empty);
@@ -344,7 +163,6 @@ static int vmw_fence_obj_init(struct vmw_fence_manager *fman,
dma_fence_init(&fence->base, &vmw_fence_ops, &fman->lock,
fman->ctx, seqno);
INIT_LIST_HEAD(&fence->seq_passed_actions);
fence->destroy = destroy;
spin_lock(&fman->lock);
@@ -352,6 +170,11 @@ static int vmw_fence_obj_init(struct vmw_fence_manager *fman,
ret = -EBUSY;
goto out_unlock;
}
/* This creates an implicit reference to the fence from the fence
* manager. It will be dropped when the fence is signaled which is
* expected to happen before deletion. The dtor has code to catch
* the rare deletion before signaling case.
*/
list_add_tail(&fence->head, &fman->fence_list);
out_unlock:
@@ -360,141 +183,24 @@ out_unlock:
}
static void vmw_fences_perform_actions(struct vmw_fence_manager *fman,
struct list_head *list)
{
struct vmw_fence_action *action, *next_action;
list_for_each_entry_safe(action, next_action, list, head) {
list_del_init(&action->head);
fman->pending_actions[action->type]--;
if (action->seq_passed != NULL)
action->seq_passed(action);
/*
* Add the cleanup action to the cleanup list so that
* it will be performed by a worker task.
*/
list_add_tail(&action->head, &fman->cleanup_list);
}
}
/**
* vmw_fence_goal_new_locked - Figure out a new device fence goal
* seqno if needed.
*
* @fman: Pointer to a fence manager.
* @passed_seqno: The seqno the device currently signals as passed.
*
* This function should be called with the fence manager lock held.
* It is typically called when we have a new passed_seqno, and
* we might need to update the fence goal. It checks to see whether
* the current fence goal has already passed, and, in that case,
* scans through all unsignaled fences to get the next fence object with an
* action attached, and sets the seqno of that fence as a new fence goal.
*
* returns true if the device goal seqno was updated. False otherwise.
*/
static bool vmw_fence_goal_new_locked(struct vmw_fence_manager *fman,
u32 passed_seqno)
{
u32 goal_seqno;
struct vmw_fence_obj *fence, *next_fence;
if (likely(!fman->seqno_valid))
return false;
goal_seqno = vmw_fence_goal_read(fman->dev_priv);
if (likely(passed_seqno - goal_seqno >= VMW_FENCE_WRAP))
return false;
fman->seqno_valid = false;
list_for_each_entry_safe(fence, next_fence, &fman->fence_list, head) {
if (!list_empty(&fence->seq_passed_actions)) {
fman->seqno_valid = true;
vmw_fence_goal_write(fman->dev_priv,
fence->base.seqno);
break;
}
}
return true;
}
/**
* vmw_fence_goal_check_locked - Replace the device fence goal seqno if
* needed.
*
* @fence: Pointer to a struct vmw_fence_obj the seqno of which should be
* considered as a device fence goal.
*
* This function should be called with the fence manager lock held.
* It is typically called when an action has been attached to a fence to
* check whether the seqno of that fence should be used for a fence
* goal interrupt. This is typically needed if the current fence goal is
* invalid, or has a higher seqno than that of the current fence object.
*
* returns true if the device goal seqno was updated. False otherwise.
*/
static bool vmw_fence_goal_check_locked(struct vmw_fence_obj *fence)
{
struct vmw_fence_manager *fman = fman_from_fence(fence);
u32 goal_seqno;
if (dma_fence_is_signaled_locked(&fence->base))
return false;
goal_seqno = vmw_fence_goal_read(fman->dev_priv);
if (likely(fman->seqno_valid &&
goal_seqno - fence->base.seqno < VMW_FENCE_WRAP))
return false;
vmw_fence_goal_write(fman->dev_priv, fence->base.seqno);
fman->seqno_valid = true;
return true;
}
static u32 __vmw_fences_update(struct vmw_fence_manager *fman)
{
struct vmw_fence_obj *fence, *next_fence;
struct list_head action_list;
bool needs_rerun;
uint32_t seqno, new_seqno;
const bool cookie = dma_fence_begin_signalling();
const u32 seqno = vmw_fence_read(fman->dev_priv);
seqno = vmw_fence_read(fman->dev_priv);
rerun:
list_for_each_entry_safe(fence, next_fence, &fman->fence_list, head) {
if (seqno - fence->base.seqno < VMW_FENCE_WRAP) {
list_del_init(&fence->head);
if (fence->waiter_added) {
vmw_seqno_waiter_remove(fman->dev_priv);
fence->waiter_added = false;
}
dma_fence_signal_locked(&fence->base);
INIT_LIST_HEAD(&action_list);
list_splice_init(&fence->seq_passed_actions,
&action_list);
vmw_fences_perform_actions(fman, &action_list);
} else
break;
}
/*
* Rerun if the fence goal seqno was updated, and the
* hardware might have raced with that update, so that
* we missed a fence_goal irq.
*/
needs_rerun = vmw_fence_goal_new_locked(fman, seqno);
if (unlikely(needs_rerun)) {
new_seqno = vmw_fence_read(fman->dev_priv);
if (new_seqno != seqno) {
seqno = new_seqno;
goto rerun;
}
}
if (!list_empty(&fman->cleanup_list))
(void) schedule_work(&fman->work);
dma_fence_end_signalling(cookie);
atomic_set_release(&fman->dev_priv->last_read_seqno, seqno);
return seqno;
}
@@ -543,14 +249,13 @@ int vmw_fence_create(struct vmw_fence_manager *fman,
struct vmw_fence_obj **p_fence)
{
struct vmw_fence_obj *fence;
int ret;
int ret;
fence = kzalloc(sizeof(*fence), GFP_KERNEL);
if (unlikely(!fence))
return -ENOMEM;
ret = vmw_fence_obj_init(fman, fence, seqno,
vmw_fence_destroy);
ret = vmw_fence_obj_init(fman, fence, seqno, vmw_fence_destroy);
if (unlikely(ret != 0))
goto out_err_init;
@@ -642,7 +347,6 @@ out_no_object:
void vmw_fence_fifo_down(struct vmw_fence_manager *fman)
{
struct list_head action_list;
int ret;
/*
@@ -665,10 +369,6 @@ void vmw_fence_fifo_down(struct vmw_fence_manager *fman)
if (unlikely(ret != 0)) {
list_del_init(&fence->head);
dma_fence_signal(&fence->base);
INIT_LIST_HEAD(&action_list);
list_splice_init(&fence->seq_passed_actions,
&action_list);
vmw_fences_perform_actions(fman, &action_list);
}
BUG_ON(!list_empty(&fence->head));
@@ -822,10 +522,11 @@ int vmw_fence_obj_unref_ioctl(struct drm_device *dev, void *data,
* attached has passed. It queues the event on the submitter's event list.
* This function is always called from atomic context.
*/
static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action)
static void vmw_event_fence_action_seq_passed(struct dma_fence *f,
struct dma_fence_cb *cb)
{
struct vmw_event_fence_action *eaction =
container_of(action, struct vmw_event_fence_action, action);
container_of(cb, struct vmw_event_fence_action, base);
struct drm_device *dev = eaction->dev;
struct drm_pending_event *event = eaction->event;
@@ -837,7 +538,7 @@ static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action)
if (likely(eaction->tv_sec != NULL)) {
struct timespec64 ts;
ktime_get_ts64(&ts);
ktime_to_timespec64(f->timestamp);
/* monotonic time, so no y2038 overflow */
*eaction->tv_sec = ts.tv_sec;
*eaction->tv_usec = ts.tv_nsec / NSEC_PER_USEC;
@@ -846,75 +547,10 @@ static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action)
drm_send_event_locked(dev, eaction->event);
eaction->event = NULL;
spin_unlock_irq(&dev->event_lock);
}
/**
* vmw_event_fence_action_cleanup
*
* @action: The struct vmw_fence_action embedded in a struct
* vmw_event_fence_action.
*
* This function is the struct vmw_fence_action destructor. It's typically
* called from a workqueue.
*/
static void vmw_event_fence_action_cleanup(struct vmw_fence_action *action)
{
struct vmw_event_fence_action *eaction =
container_of(action, struct vmw_event_fence_action, action);
vmw_fence_obj_unreference(&eaction->fence);
dma_fence_put(f);
kfree(eaction);
}
/**
* vmw_fence_obj_add_action - Add an action to a fence object.
*
* @fence: The fence object.
* @action: The action to add.
*
* Note that the action callbacks may be executed before this function
* returns.
*/
static void vmw_fence_obj_add_action(struct vmw_fence_obj *fence,
struct vmw_fence_action *action)
{
struct vmw_fence_manager *fman = fman_from_fence(fence);
bool run_update = false;
mutex_lock(&fman->goal_irq_mutex);
spin_lock(&fman->lock);
fman->pending_actions[action->type]++;
if (dma_fence_is_signaled_locked(&fence->base)) {
struct list_head action_list;
INIT_LIST_HEAD(&action_list);
list_add_tail(&action->head, &action_list);
vmw_fences_perform_actions(fman, &action_list);
} else {
list_add_tail(&action->head, &fence->seq_passed_actions);
/*
* This function may set fman::seqno_valid, so it must
* be run with the goal_irq_mutex held.
*/
run_update = vmw_fence_goal_check_locked(fence);
}
spin_unlock(&fman->lock);
if (run_update) {
if (!fman->goal_irq_on) {
fman->goal_irq_on = true;
vmw_goal_waiter_add(fman->dev_priv);
}
vmw_fences_update(fman);
}
mutex_unlock(&fman->goal_irq_mutex);
}
/**
* vmw_event_fence_action_queue - Post an event for sending when a fence
* object seqno has passed.
@@ -949,18 +585,14 @@ int vmw_event_fence_action_queue(struct drm_file *file_priv,
return -ENOMEM;
eaction->event = event;
eaction->action.seq_passed = vmw_event_fence_action_seq_passed;
eaction->action.cleanup = vmw_event_fence_action_cleanup;
eaction->action.type = VMW_ACTION_EVENT;
eaction->fence = vmw_fence_obj_reference(fence);
eaction->dev = &fman->dev_priv->drm;
eaction->tv_sec = tv_sec;
eaction->tv_usec = tv_usec;
vmw_fence_obj_add_action(fence, &eaction->action);
vmw_fence_obj_reference(fence); // Dropped in CB
if (dma_fence_add_callback(&fence->base, &eaction->base,
vmw_event_fence_action_seq_passed) < 0)
vmw_event_fence_action_seq_passed(&fence->base, &eaction->base);
return 0;
}

View File

@@ -39,27 +39,10 @@ struct drm_pending_event;
struct vmw_private;
struct vmw_fence_manager;
/**
*
*
*/
enum vmw_action_type {
VMW_ACTION_EVENT = 0,
VMW_ACTION_MAX
};
struct vmw_fence_action {
struct list_head head;
enum vmw_action_type type;
void (*seq_passed) (struct vmw_fence_action *action);
void (*cleanup) (struct vmw_fence_action *action);
};
struct vmw_fence_obj {
struct dma_fence base;
bool waiter_added;
struct list_head head;
struct list_head seq_passed_actions;
void (*destroy)(struct vmw_fence_obj *fence);
};

View File

@@ -230,51 +230,59 @@ out_err:
return ret;
}
void vmw_generic_waiter_add(struct vmw_private *dev_priv,
bool vmw_generic_waiter_add(struct vmw_private *dev_priv,
u32 flag, int *waiter_count)
{
spin_lock_bh(&dev_priv->waiter_lock);
bool hw_programmed = false;
spin_lock(&dev_priv->waiter_lock);
if ((*waiter_count)++ == 0) {
vmw_irq_status_write(dev_priv, flag);
dev_priv->irq_mask |= flag;
vmw_write(dev_priv, SVGA_REG_IRQMASK, dev_priv->irq_mask);
hw_programmed = true;
}
spin_unlock_bh(&dev_priv->waiter_lock);
spin_unlock(&dev_priv->waiter_lock);
return hw_programmed;
}
void vmw_generic_waiter_remove(struct vmw_private *dev_priv,
bool vmw_generic_waiter_remove(struct vmw_private *dev_priv,
u32 flag, int *waiter_count)
{
spin_lock_bh(&dev_priv->waiter_lock);
bool hw_programmed = false;
spin_lock(&dev_priv->waiter_lock);
if (--(*waiter_count) == 0) {
dev_priv->irq_mask &= ~flag;
vmw_write(dev_priv, SVGA_REG_IRQMASK, dev_priv->irq_mask);
hw_programmed = true;
}
spin_unlock_bh(&dev_priv->waiter_lock);
spin_unlock(&dev_priv->waiter_lock);
return hw_programmed;
}
void vmw_seqno_waiter_add(struct vmw_private *dev_priv)
bool vmw_seqno_waiter_add(struct vmw_private *dev_priv)
{
vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_ANY_FENCE,
&dev_priv->fence_queue_waiters);
return vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_ANY_FENCE,
&dev_priv->fence_queue_waiters);
}
void vmw_seqno_waiter_remove(struct vmw_private *dev_priv)
bool vmw_seqno_waiter_remove(struct vmw_private *dev_priv)
{
vmw_generic_waiter_remove(dev_priv, SVGA_IRQFLAG_ANY_FENCE,
&dev_priv->fence_queue_waiters);
return vmw_generic_waiter_remove(dev_priv, SVGA_IRQFLAG_ANY_FENCE,
&dev_priv->fence_queue_waiters);
}
void vmw_goal_waiter_add(struct vmw_private *dev_priv)
bool vmw_goal_waiter_add(struct vmw_private *dev_priv)
{
vmw_generic_waiter_add(dev_priv, vmw_irqflag_fence_goal(dev_priv),
&dev_priv->goal_queue_waiters);
return vmw_generic_waiter_add(dev_priv, vmw_irqflag_fence_goal(dev_priv),
&dev_priv->goal_queue_waiters);
}
void vmw_goal_waiter_remove(struct vmw_private *dev_priv)
bool vmw_goal_waiter_remove(struct vmw_private *dev_priv)
{
vmw_generic_waiter_remove(dev_priv, vmw_irqflag_fence_goal(dev_priv),
&dev_priv->goal_queue_waiters);
return vmw_generic_waiter_remove(dev_priv, vmw_irqflag_fence_goal(dev_priv),
&dev_priv->goal_queue_waiters);
}
static void vmw_irq_preinstall(struct drm_device *dev)